Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(16): 17956-17965, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38680344

ABSTRACT

This study delves into the potential advantage of utilizing crab shells as sustainable solid adsorbents for CO2 capture, offering an environmentally friendly alternative to conventional porous adsorbents, such as zeolites, silicas, metal-organic frameworks (MOFs), and porous carbons. The investigation focuses on crab shell waste, which exhibits inherent natural porosity and N-bearing groups, making them promising candidates for CO2 physisorption and chemisorption applications. Selective deproteinization and demineralization treatments were used to enhance textural properties while preserving the natural porous structure of the crab shells. The impact of deproteinization and demineralization treatments on CO2 adsorption and speciation at the atomic scale, via solid-state NMR, and correlated findings with textural properties and biomass composition were investigated. The best-performing sample exhibits a surface area of 36 m2/g and a CO2 adsorption capacity of 0.31 mmol/g at 1 bar and 298 K, representing gains of ∼3.5 and 2, respectively, compared to the pristine crab shell. These results underline the potential of fishing industry wastes as a cost-effective, renewable, and eco-friendly source to produce functional porous adsorbents.

2.
Chem Commun (Camb) ; 60(30): 4015-4035, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38525497

ABSTRACT

This comprehensive review describes recent advancements in the use of solid-state NMR-assisted methods and computational modeling strategies to unravel gas adsorption mechanisms and CO2 speciation in porous CO2-adsorbent silica materials at the atomic scale. This work provides new perspectives for the innovative modifications of these materials rendering them more amenable to the use of advanced NMR methods.

3.
Anal Chem ; 95(27): 10384-10389, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37376721

ABSTRACT

Additive manufacturing such as three-dimensional (3D)-printing has revolutionized the fast and low-cost fabrication of otherwise expensive NMR parts. High-resolution solid-state NMR spectroscopy demands rotating the sample at a specific angle (54.74°) inside a pneumatic turbine, which must be designed to achieve stable and high spinning speeds without mechanical friction. Moreover, instability of the sample rotation often leads to crashes, resulting in costly repairs. Producing these intricate parts requires traditional machining, which is time-consuming, costly, and relies on specialized labor. Herein, we show that 3D-printing can be used to fabricate the sample holder housing (stator) in one shot, while the radiofrequency (RF) solenoid was constructed using conventional materials available in electronics stores. The 3D-printed stator, equipped with a homemade RF coil, showed remarkable spinning stability, yielding high-quality NMR data. At a cost below 5 €, the 3D-printed stator represents a cost reduction of over 99% compared to repaired commercial stators, illustrating the potential of 3D-printing for mass-producing affordable magic-angle spinning stators.

4.
Colloids Surf B Biointerfaces ; 227: 113341, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37210796

ABSTRACT

The combination of in vitro models of biological membranes based on solid-supported lipid bilayers (SLBs) and of surface sensitive techniques, such as neutron reflectometry (NR), atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D), is well suited to provide quantitative information about molecular level interactions and lipid spatial distributions. In this work, cellular plasma membranes have been mimicked by designing complex SLB, containing phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) lipids as well as incorporating synthetic lipo-peptides that simulate the cytoplasmic tails of transmembrane proteins. The QCM-D results revealed that the adsorption and fusion kinetics of PtdIns4,5P2 are highly dependent of Mg2+. Additionally, it was shown that increasing concentrations of PtdIns4,5P2 leads to the formation of SLBs with higher homogeneity. The presence of PtdIns4,5P2 clusters was visualized by AFM. NR provided important insights about the structural organization of the various components within the SLB, highlighting that the leaflet symmetry of these SLBs is broken by the presence of CD4-derived cargo peptides. Finally, we foresee our study to be a starting point for more sophisticated in vitro models of biological membranes with the incorporation of inositol phospholipids and synthetic endocytic motifs.


Subject(s)
Phosphatidylinositols , Quartz Crystal Microbalance Techniques , Phosphatidylinositols/chemistry , Quartz Crystal Microbalance Techniques/methods , Microscopy, Atomic Force , Lipid Bilayers/chemistry , Peptides/chemistry , Neutrons
5.
J Am Chem Soc ; 145(16): 8764-8769, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37037457

ABSTRACT

Adsorption isotherms obtained through volumetric measurements are widely used to estimate the gas adsorption performance of porous materials. Nonetheless, there is always ambiguity regarding the contributions of chemi- and physisorption processes to the overall retained gas volume. In this work, we propose, for the first time, the use of solid-state NMR (ssNMR) to generate isotherms of CO2 adsorbed onto an amine-modified silica sorbent. This method enables the separation of six individual isotherms for chemi- and physisorbed CO2 components, a feat only possible using the discrimination power of NMR spectroscopy. The adsorption mechanism for each adsorbed species was ascertained by tracking their adsorption profiles at various pressures. The proposed method was validated against conventional volumetric adsorption measurements. The isotherm curves obtained by the proposed ssNMR-assisted approach enable advanced analysis of the sorbents, revealing the potential of variable-pressure NMR experiments in gas adsorption applications.

6.
J Phys Chem C Nanomater Interfaces ; 126(30): 12582-12591, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35968194

ABSTRACT

Previous studies on CO2 adsorbents have mainly addressed the identification and quantification of adsorbed CO2 species in amine-modified porous materials. Investigation of molecular motion of CO2 species in confinement has not been explored in depth yet. This work entails a comprehensive study of molecular dynamics of the different CO2 species chemi- and physisorbed at amine-modified silica materials through the determination of the rotating frame spin-lattice relaxation times (T 1ρ) by solid-state NMR. Rotational correlation times (τC) were also estimated using spin relaxation models based on the Bloch, Wangsness, and Redfield and the Bloembergen-Purcell-Pound theories. As expected, the τC values for the two physisorbed CO2 species are considerably shorter (32 and 20 µs) than for the three identified chemisorbed CO2 species (162, 62, and 123 µs). The differences in molecular dynamics between the different chemisorbed species correlate well with the structures previously proposed. In the case of the physisorbed CO2 species, the τC values of the CO2 species displaying faster molecular dynamics falls in the range of viscous liquids, whereas the species presenting slower dynamics exhibit T 1ρ and τC values compatible with a CO2 layer of weakly interacting molecules with the silica surface. The values for chemical shift anisotropy (CSA) and 1H-13C heteronuclear dipolar couplings have also been estimated from T 1ρ measurements, for each adsorbed CO2 species. The CSA tensor parameters obtained from fitting the relaxation data agree with the experimentally measured CSA values, thus showing that the theories are well suited to study CO2 dynamics in silica surfaces.

7.
Chemistry ; 28(64): e202201795, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-35943080

ABSTRACT

The identification of acid and nonacid species at the external surface of zeolites remains a major challenge, in contrast to the extensively-studied internal acid sites. Here, it is shown that the synthesis of zeolite ZSM-5 samples with distinct particle sizes, combined with solid-state NMR and computational studies of trimethylphosphine oxide (TMPO) adsorption, provides insight into the chemical species on the external surface of the zeolite crystals. 1 H-31 P HETCOR NMR spectra of TMPO-loaded zeolites exhibit a broad correlation peak at δP ∼35-55 ppm and δH ∼5-12 ppm assigned to external SiOH species. Pore-mouth Brønsted acid sites exhibit 31 P and 1 H NMR resonances and adsorption energies close to those reported for internal acid sites interacting with TMPO. The presence of an external tricoordinate Al-Lewis site interacting strongly with TMPO is suggested, resulting in 31 P resonances that overlap with the peaks usually ascribed to the interaction of TMPO with Brønsted sites.


Subject(s)
Zeolites , Zeolites/chemistry , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging , Acids/chemistry
8.
Chemistry ; 28(14): e202104298, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35080291

ABSTRACT

ITQ-13 is a medium-pore zeolite that can be prepared in all-silica form and as silicogermanate with Si/Ge ratios as low as 3. Usually synthesised in the presence of fluoride, ITQ-13 is among the very few systems containing fluoride anions in two distinct cage types, cube-like d4r units and [4 ⋅ 56 ] cages. Here, dispersion-corrected density functional theory (DFT) calculations are used to investigate the energetically most favourable Ge distributions for Si/Ge ratios between 55 and 6. The calculations show Ge atoms are incorporated at both the corners of d4r cages and at the basal plane of the [4 ⋅ 56 ] cages, in accordance with 19 F NMR spectroscopy. Two Ge atoms at adjacent corners of [4 ⋅ 56 ] cages are stable at the highest Ge content considered (Si/Ge=6). Such a local environment has not yet been considered in the experimental literature. A calculation of the corresponding 19 F NMR resonance points to overlap with other resonances, which might preclude its clear identification. Additional calculations investigate the variation of the dynamic behaviour of the fluoride anions as a function of the local environment as well as the selective defluorination of the [4 ⋅ 56 ] cages.

9.
J Mater Chem A Mater ; 9(9): 5542-5555, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-34671479

ABSTRACT

This work entails a comprehensive solid-state NMR and computational study of the influence of water and CO2 partial pressures on the CO2-adducts formed in amine-grafted silica sorbents. Our approach provides atomic level insights on hypothesised mechanisms for CO2 capture under dry and wet conditions in a tightly controlled atmosphere. The method used for sample preparation avoids the use of liquid water slurries, as performed in previous studies, enabling a molecular level understanding, by NMR, of the influence of controlled amounts of water vapor (down to ca. 0.7 kPa) in CO2 chemisorption processes. Details on the formation mechanism of moisture-induced CO2 species are provided aiming to study CO2 : H2O binary mixtures in amine-grafted silica sorbents. The interconversion between distinct chemisorbed CO2 species was quantitatively monitored by NMR under wet and dry conditions in silica sorbents grafted with amines possessing distinct bulkiness (primary and tertiary). Particular attention was given to two distinct carbonyl environments resonating at δ C ∼161 and 155 ppm, as their presence and relative intensities are greatly affected by moisture depending on the experimental conditions. 1D and 2D NMR spectral assignments of both these 13C resonances were assisted by density functional theory calculations of 1H and 13C chemical shifts on model structures of alkylamines grafted onto the silica surface that validated various hydrogen-bonded CO2 species that may occur upon formation of bicarbonate, carbamic acid and alkylammonium carbamate ion pairs. Water is a key component in flue gas streams, playing a major role in CO2 speciation, and this work extends the current knowledge on chemisorbed CO2 structures and their stabilities under dry/wet conditions, on amine-modified solid surfaces.

10.
J Phys Chem C Nanomater Interfaces ; 125(27): 14797-14806, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34567337

ABSTRACT

Although spectroscopic investigation of surface chemisorbed CO2 species has been the focus of most studies, identifying different domains of weakly interacting (physisorbed) CO2 molecules in confined spaces is less trivial as they are often indistinguishable resorting to (isotropic) NMR chemical shift or vibrational band analyses. Herein, we undertake for the first time a thorough solid-state NMR analysis of CO2 species physisorbed prior to and after amine-functionalization of silica surfaces; combining 13C NMR chemical shift anisotropy (CSA) and longitudinal relaxation times (T 1). These methods were used to quantitatively distinguish otherwise overlapping physisorbed CO2 signals, which contributed to an empirical model of CO2 speciation for the physi- and chemisorbed fractions. The quantitatively measured T 1 values confirm the presence of CO2 molecular dynamics on the microsecond, millisecond, and second time scales, strongly supporting the existence of up to three physisorbed CO2 species with proportions of about 15%, 15%, and 70%, respectively. Our approach takes advantage from using adsorbed 13C-labeled CO2 as probe molecules and quantitative cross-polarization magic-angle spinning to study both physi- and chemisorbed CO2 species, showing that 45% of chemisorbed CO2 versus 55% of physisorbed CO2 is formed from the overall confined CO2 in amine-modified hybrid silicas. A total of six distinct CO2 environments were identified from which three physisorbed CO2 were discriminated, coined here as "gas, liquid, and solid-like" CO2 species. The complex nature of physisorbed CO2 in the presence and absence of chemisorbed CO2 species is revealed, shedding light on what fractions of weakly interacting CO2 are affected upon pore functionalization. This work extends the current knowledge on CO2 sorption mechanisms providing new clues toward CO2 sorbent optimization.

11.
J Am Chem Soc ; 143(34): 13616-13623, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34410690

ABSTRACT

Elucidating the nature, strength, and siting of acid sites in zeolites is fundamental to fathom their reactivity and catalytic behavior. Despite decades of research, this endeavor remains a major challenge. Trimethylphosphine oxide (TMPO) has been proposed as a reliable probe molecule to study the acid properties of solid acid catalysts, allowing the identification of distinct Brønsted and Lewis acid sites and the assessment of Brønsted acid strengths. Recently, doubts have been raised regarding the assignment of the 31P NMR resonances of TMPO-loaded zeolites. Here, it is shown that a judicious control of TMPO loading combined with two-dimensional 1H-31P HETCOR solid-state NMR, DFT, and ab initio molecular dynamics (AIMD)-based computational modeling provides an unprecedented atomistic description of the host-guest and guest-guest interactions of TMPO molecules confined within HZSM-5 molecular-sized voids. 31P NMR resonances usually assigned to TMPO molecules interacting with Brønsted sites of different acid strength arise instead from both changes in the probe molecule confinement effects at ZSM-5 channel system and the formation of protonated TMPO dimers. Moreover, DFT/AIMD shows that the 1H and 31P NMR chemical shifts strongly depend on the siting of the framework aluminum atoms. This work overhauls the current interpretation of NMR spectra, raising important concerns about the widely accepted use of probe molecules for studying acid sites in zeolites.

12.
Angew Chem Int Ed Engl ; 59(1): 487-495, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31659848

ABSTRACT

Heptazine-based polymeric carbon nitrides (PCN) are promising photocatalysts for light-driven redox transformations. However, their activity is hampered by low surface area resulting in low concentration of accessible active sites. Herein, we report a bottom-up preparation of PCN nanoparticles with a narrow size distribution (ca. 10±3 nm), which are fully soluble in water showing no gelation or precipitation over several months. They allow photocatalysis to be carried out under quasi-homogeneous conditions. The superior performance of water-soluble PCN, compared to conventional solid PCN, is shown in photocatalytic H2 O2 production via reduction of oxygen accompanied by highly selective photooxidation of 4-methoxybenzyl alcohol and benzyl alcohol or lignocellulose-derived feedstock (ethanol, glycerol, glucose). The dissolved photocatalyst can be easily recovered and re-dissolved by simple modulation of the ionic strength of the medium, without any loss of activity and selectivity.

13.
Chem Commun (Camb) ; 55(84): 12635-12638, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31580363

ABSTRACT

Two-dimensional 1H-31P heteronuclear correlation NMR of trimethylphosphine oxide (TMPO) adsorbed in zeolites, in tandem with DFT calculations, challenges previous one-dimensional 31P NMR assignments, enabling the unambiguous discrimination of Brønsted and Lewis acid sites, extending the understanding of TMPO:Brønsted complexes formed with distinct stoichiometries at the HZSM-5 zeolite surface, and the proton-transfer mechanism.

14.
Environ Sci Technol ; 53(5): 2758-2767, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30730709

ABSTRACT

Chemisorbent materials, based on porous aminosilicas, are among the most promising adsorbents for direct air capture applications, one of the key technologies to mitigate carbon emissions. Herein, a critical survey of all reported chemisorbed CO2 species, which may form in aminosilica surfaces, is performed by revisiting and providing new experimental proofs of assignment of the distinct CO2 species reported thus far in the literature, highlighting controversial assignments regarding the existence of chemisorbed CO2 species still under debate. Models of carbamic acid, alkylammonium carbamate with different conformations and hydrogen bonding arrangements were ascertained using density functional theory (DFT) methods, mainly through the comparison of the experimental 13C and 15N NMR chemical shifts with those obtained computationally. CO2 models with variable number of amines and silanol groups were also evaluated to explain the effect of amine aggregation in CO2 speciation under confinement. In addition, other less commonly studied chemisorbed CO2 species (e.g., alkylammonium bicarbonate, ditethered carbamic acid and silylpropylcarbamate), largely due to the difficulty in obtaining spectroscopic identification for those, have also been investigated in great detail. The existence of either neutral or charged (alkylammonium siloxides) amine groups, prior to CO2 adsorption, is also addressed. This work extends the molecular-level understanding of chemisorbed CO2 species in amine-oxide hybrid surfaces showing the benefit of integrating spectroscopy and theoretical approaches.


Subject(s)
Carbon Dioxide , Silicon Dioxide , Adsorption , Amines , Surveys and Questionnaires
15.
Magn Reson Chem ; 57(5): 243-255, 2019 05.
Article in English | MEDLINE | ID: mdl-30475406

ABSTRACT

Hydrogen bonds (HBs) play a key role in the supramolecular arrangement of crystalline solids and, although they have been extensively studied, the influence of their strength and geometry on crystal packing remains poorly understood. Here we describe the crystal structures of two novel protic gabapentin (GBP) pharmaceutical salts prepared with the coformers methanesulfonic acid (GBP:METHA) and ethanesulfonic acid (GBP:ETHA). This study encompasses experimental and computational electronic structure analyses of 1 H NMR chemical shifts (CSs), upon in silico HB cleavage. GBP:METHA and GBP:ETHA crystal packing comprise two main structural domains: an ionic layer (characterized by the presence of charge-assisted + NHGBP ⋯O-METHA/ETHA HB interactions) and a neutral layer generated in a different way for each salt, mainly due to the presence of bifurcated HB interactions. A comprehensive study of HB networks is presented for GBP:METHA, by isolating molecular fragments involved in distinct HB types (NH⋯O, OH⋯O, and CH⋯O) obtained from in silico disassembling of an optimized three-dimensional packing structure. Formation of HB leads to calculated 1 H NMR CS changes from 0.4 to ~5.8 ppm. This study further attempts to assess how 1 H NMR CS of protons engaged in certain HB are affected when other nearby HB, involving bifurcated or geminal/vicinal hydrogen atoms, are removed.

16.
Chemistry ; 24(40): 10136-10145, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-29663545

ABSTRACT

The wealth of site-selective structural information on CO2 speciation, obtained by spectroscopic techniques, is often hampered by the lack of easy-to-control synthetic routes. Herein, an alternative experimental protocol that relies on the high sensitivity of 13 C chemical shift anisotropy (CSA) tensors to proton transfer, is presented to unambiguously distinguish between ionic/charged and neutral CO2 species, formed upon adsorption of 13 CO2 in amine-modified porous materials. Control of the surface amine spacing was achieved through the use of amine protecting groups during functionalisation prior to CO2 adsorption. This approach enabled the formation of either "isolated" or "paired" carbamate/carbamic acid species, providing a first experimental NMR proof towards the identification of both aggregation states. Computer modelling of surface CO2 -amine adducts assisted the solid-state NMR assignments and validated various hydrogen-bond arrangements occurring upon formation of isolated/aggregated carbamic acid and alkylammonium carbamate ion species. This work extends the understanding of chemisorbed CO2 structures formed at pore surfaces and reveals structural insight about the protonation source responsible for the proton-transfer mechanism in such aggregates.

17.
J Am Chem Soc ; 139(1): 389-408, 2017 01 11.
Article in English | MEDLINE | ID: mdl-27951638

ABSTRACT

Two-dimensional (2D) solid-state nuclear magnetic resonance (SSNMR) experiments on samples loaded with 13C-labeled CO2, "under controlled partial pressures", have been performed in this work, revealing unprecedented structural details about the formation of CO2 adducts from its reaction with various amine-functionalized SBA-15 containing amines having distinct steric hindrances (e.g., primary, secondary) and similar loadings. Three chemisorbed CO2 species were identified by NMR from distinct carbonyl environments resonating at δC ≈ 153, 160, and 164 ppm. The newly reported chemisorbed CO2 species at δC ≈ 153 ppm was found to be extremely moisture dependent. A comprehensive 1H-based SSNMR study [1D 1H and 2D 1H-X heteronuclear correlation (HETCOR, X = 13C, 29Si) experiments] was performed on samples subjected to different treatments. It was found that all chemisorbed CO2 species are involved in hydrogen bonds (HBs) with either surface silanols or neighboring alkylamines. 1H chemical shifts up to 11.8 ppm revealed that certain chemisorbed CO2 species are engaged in very strong HBs. We effectively demonstrate that NMR may help in discriminating among free and hydrogen-bonded functional groups. 13C{14N} dipolar-recoupling NMR showed that the formation of carbonate or bicarbonate is excluded. Density functional theory calculations on models of alkylamines grafted into the silica surface assisted the 1H/13C assignments and validated various HB arrangements that may occur upon formation of carbamic acid. This work extends the understanding of the chemisorbed CO2 structures that are formed upon bonding of CO2 with surface amines and readily released from the surface by pressure swing.

18.
Chem Commun (Camb) ; 52(51): 7986-9, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27257634

ABSTRACT

A supramolecular strategy based on strong molecular dipole moments is presented to gain access to covalent organic framework structures with high crystallinity and porosity. Antiparallel alignment of the molecules within the pore walls is proposed to lead to reinforced columnar stacking, thus affording a high-quality material. As a proof of principle, a novel pyrene dione building block was prepared and reacted with hexahydroxytriphenylene to form a boronic ester-linked covalent organic framework. We anticipate the strategy presented herein to be valuable for producing highly defined COF structures.

19.
Carbohydr Polym ; 130: 455-64, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26076647

ABSTRACT

Purified chitin-glucan complex (CGCpure) was extracted from Komagataella pastoris biomass using a hot alkaline treatment, followed by neutralization and repeated washing with deionized water. The co-polymer thus obtained had a ß-glucan:chitin molar ratio of 75:25 and low protein and inorganic salts contents (3.0 and 0.9 wt%, respectively). CGCpure had an average molecular weight of 4.9 × 10(5)Da with a polydispersity index of 1.7, and a crystallinity index of 50%. Solid-state NMR provided structural insight at the co-polymer. X-ray diffraction suggests that CGCpure has α-chitin in its structure. CGCpure presented an endothermic decomposition peak at 315°C, assigned to the degradation of the saccharide structures. This study revealed that K. pastoris CGC has properties similar to other chitinous biopolymers and may represent an attractive alternative to crustacean chitin derived-products, being a reliable raw material for the development of new/improved pharmaceutical, cosmetic or food products.


Subject(s)
Biomass , Biopolymers/metabolism , Chitin/metabolism , Glucans/metabolism , Pichia/growth & development , Biopolymers/chemistry , Chitin/chemistry , Glucans/chemistry , Molecular Weight , Pichia/metabolism , X-Ray Diffraction
20.
Solid State Nucl Magn Reson ; 65: 49-63, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25604487

ABSTRACT

We present the structure of a new equimolar 1:1 cocrystal formed by 3,5-dimethyl-1H-pyrazole (dmpz) and 4,5-dimethyl-1H-imidazole (dmim), determined by means of powder X-ray diffraction data combined with solid-state NMR that provided insight into topological details of hydrogen bonding connectivities and weak interactions such as CH···π contacts. The use of various 1D/2D (13)C, (15)N and (1)H high-resolution solid-state NMR techniques provided structural insight on local length scales revealing internuclear proximities and relative orientations between the dmim and dmpz molecular building blocks of the studied cocrystal. Molecular modeling and DFT calculations were also employed to generate meaningful structures. DFT refinement was able to decrease the figure of merit R(F(2)) from ~11% (PXRD only) to 5.4%. An attempt was made to rationalize the role of NH···N and CH···π contacts in stabilizing the reported cocrystal. For this purpose four imidazole derivatives with distinct placement of methyl substituents were reacted with dmpz to understand the effect of methylation in blocking or enabling certain intermolecular contacts. Only one imidazole derivative (dmim) was able to incorporate into the dmpz trimeric motif thus resulting in a cocrystal, which contains both hydrophobic (methyl groups) and hydrophilic components that self-assemble to form an atypical 1D network of helicoidal hydrogen bonded pattern, featuring structural similarities with alpha-helix arrangements in proteins. The 1:1 dmpz···dmim compound I is the first example of a cocrystal formed by two different azoles.

SELECTION OF CITATIONS
SEARCH DETAIL
...