Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9366, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653981

ABSTRACT

It is crucial to optimize energy consumption in buildings while considering thermal comfort. The first step here involved an EnergyPlus simulation on a trade center building located in Tehran, Bandar Abbas, and Tabriz, Iran. A multi-objective optimization was then performed based on non-dominated sorting genetic algorithm II (NSGA-II) in jEPlus + EA to establish the building in the selected city where would benefit the most from implementing the radiant ceiling cooling system. Efforts were undertaken to choose environmentally-friendly materials. The final solution by Pareto charts resulted in a 52% reduction in energy consumption, a 37.3% decrease in cooling load, and a 17.4% improvement in comfort hours compared to the original design. Annual emission of greenhouse gas reduced as 167.67 tone of CO2 equivalent emission, 25.77 ton of CH4, and 0.2 ton of NO2. The mentioned algorithm was conducted for the first time on a trade center, including a DOAS system and radiant ceiling cooling system. Simultaneously, the environmental-friendly materials were dealt with. The procedure holds significant relevance for the design and optimization of buildings in Iran, especially wherever the climate is hot and humid. This approach offers advantages to the environment by reducing the impact on energy resources and utilizing environmentally-friendly materials.

2.
J Chem Phys ; 138(6): 065101, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23425492

ABSTRACT

The lipid membranes of living cells form an integral part of biological systems, and the mechanical properties of these membranes play an important role in biophysical investigations. One interesting problem to be evaluated is the effect of protein insertion in one leaflet of a bilayer on the physical properties of lipid membrane. In the present study, an all atom (fine-grained) molecular dynamics simulation is used to investigate the binding of cytotoxin A3 (CTX A3), a cytotoxin from snake venom, to a phosphatidylcholine lipid bilayer. Then, a 5-microsecond [corrected] coarse-grained molecular dynamics simulation is carried out to compute the pressure tensor, lateral pressure, surface tension, and first moment of lateral pressure in each monolayer. Our simulations reveal that the insertion of CTX A3 into one monolayer results in an asymmetrical change in the lateral pressure and corresponding spatial distribution of surface tension of the individual bilayer leaflets. The relative variation in the surface tension of the two monolayers as a result of a change in the contribution of the various intermolecular forces may potentially be expressed morphologically.


Subject(s)
Lipid Bilayers , Marine Toxins/chemistry , Nanotechnology , Surface Tension , Cell Membrane/metabolism , Marine Toxins/metabolism , Models, Molecular , Molecular Dynamics Simulation , Pressure
3.
J Membr Biol ; 246(1): 67-73, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23073731

ABSTRACT

A very important part of the living cells of biological systems is the lipid membrane. The mechanical properties of this membrane play an important role in biophysical studies. Investigation as to how the insertion of additional phospholipids in one leaflet of a bilayer affects the physical properties of the obtained asymmetric lipid membrane is of recent practical interest. In this work a coarse-grained molecular dynamics simulation was carried out in order to compute the pressure tensor, the lateral pressure, the surface tension and the first moment of lateral pressure in each leaflet of such a bilayer. Our simulations indicate that adding more phospholipids into one monolayer results in asymmetrical changes in the lateral pressure of the individual bilayer leaflets. Interestingly, it has been observed that a change in phospholipid density in one leaflet affects the physical properties of unperturbed leaflet as well. The asymmetric behavior of the physical properties of the two leaflets as a result of a change in the contribution of the various intermolecular forces in the presence of additional phospholipids may be expressed formally.


Subject(s)
Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...