Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960411

ABSTRACT

AIM: We investigated whether there was interspecies and intraspecies variation in spore germination of 12 strains of arbuscular mycorrhizal fungi when co-entrapped with the diazotrophic plant growth-promoting bacteria, Azospirillum brasilense Sp7 in alginate hydrogel beads. METHODS AND RESULTS: Twelve Rhizophagus irregularis, Rhizophagus intraradices, and Funneliformis mosseae strains were separately combined with a live culture of Azospirillum brasilense Sp7. Each fungal-bacterial consortia was supplemented with sodium alginate to a 2% concentration (v/v) and cross-linked in calcium chloride (2% w/v) to form biodegradable hydrogel beads. One hundred beads from each combination (total of 1200) were fixed in solidified modified Strullu and Romand media. Beads were observed for successful spore germination and bacterial growth over 14 days. In all cases, successful growth of A. brasilense was observed. For arbuscular mycorrhizal fungi, interspecies variation in spore germination was observed, with R. intraradices having the highest germination rate (64.3%), followed by R. irregularis (45.5%) and F. mosseae (40.3%). However, a difference in intraspecies germination was only observed among strains of R. irregularis and F. mosseae. Despite having varying levels of germination, even the strains with the lowest potential were still able to establish with the plant host Brachypodium distachyon in a model system. CONCLUSIONS: Arbuscular mycorrhizal spore germination varied across strains when co-entrapped with a diazotrophic plant growth-promoting bacteria. This demonstrates that hydrogel beads containing a mixed consortium hold potential as a sustainable biofertilizer and that compatibility tests remain an important building block when aiming to create a hydrogel biofertilizer that encases a diversity of bacteria and fungi. Moving forward, further studies should be conducted to test the efficacy of these hydrogel biofertilizers on different crops across varying climatic conditions in order to optimize their potential.


Subject(s)
Azospirillum brasilense , Fertilizers , Hydrogels , Mycorrhizae , Spores, Fungal , Mycorrhizae/physiology , Spores, Fungal/growth & development , Azospirillum brasilense/metabolism , Fertilizers/analysis , Alginates
2.
Mycologia ; 115(4): 470-483, 2023.
Article in English | MEDLINE | ID: mdl-37262388

ABSTRACT

Canopy soils occur on tree branches throughout the temperate rainforests of the Pacific Northwest Coast and are recognized as a defining characteristic of these ecosystems. Certain tree species extend adventitious roots into these canopy soil environments. Yet, research on adventitious root-associated fungi remains limited. Our study used microscopy to compare fungal colonization intensity between canopy and forest floor roots of old-growth bigleaf maple (Acer macrophyllum) trees. Subsequently, two high-throughput sequencing platforms were used to explore the spatial and seasonal variation of root-associated fungi between the two soil environments over one year. We found that canopy and forest floor roots had similar colonization intensity and were associating with a diversity of arbuscular mycorrhizal fungi and other potential symbionts, many of which were resolved to species level. Soil environment and seasonality affected root-associated fungal community composition, and several fungal species were indicative of the canopy soil environment. In Washington State's (USA) temperate old-growth rainforests, these canopy soil environments host a unique suite of root-associated fungi. The presence of arbuscular mycorrhizae provides further evidence that adventitious roots form fungal associations to exploit canopy soils for resources, and there may be novel relationships forming with other fungi. These soils may be providing a redundancy compartment (i.e., "nutrient reserve"), imparting a resiliency to disturbances for certain old-growth trees.


Subject(s)
Acer , Mycorrhizae , Trees/microbiology , Ecosystem , Plant Roots/microbiology , Soil , Soil Microbiology , Fungi/genetics
3.
Biotechniques ; 68(2): 72-78, 2020 02.
Article in English | MEDLINE | ID: mdl-31849245

ABSTRACT

The Oxford Nanopore Technologies MinION™ sequencer holds the capability to generate long amplicon reads; however, only a small amount of information is available regarding methodological approaches and the ability to identify a broad diversity of fungal taxa. To assess capabilities, three fungal mock communities were sequenced, each of which had varying ratios of 16 taxa. The data were processed through our selected pipeline. The MinION recovered all mock community members, when mixed at equal ratios. When a taxon was represented at a lower ratio, it was not recovered or decreased in relative abundance. Despite high error rates, highly accurate consensus sequences can be derived. This methodological approach identified all mock community taxa, demonstrating the MinION can be used as a practical alternative to profile fungal communities.


Subject(s)
DNA, Fungal/analysis , Fungi/isolation & purification , Mycobiome , Nanopore Sequencing , Fungi/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...