Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36146056

ABSTRACT

Polyaniline (PANI) composites have gained momentum as supercapacitive materials due to their high energy density and power density. However, some drawbacks in their performance remain, such as the low stability after hundreds of charge-discharge cycles and limitations in the synthesis scalability. Herein, we report for the first time PANI-Graphitic oxidized carbon nitride composites as potential supercapacitor material. The biomimetic polymerization of aniline assisted by hematin, supported by phosphorous and oxygen-modified carbon nitrides (g-POCN and g-OCN, respectively), achieved up to 89% yield. The obtained PAI/g-POCN and PANI/g-OCN show enhanced electrochemical properties, such as conductivity of up to 0.0375 S/cm, specific capacitances (Cs) of up to 294 F/g (at high current densities, 5 A/g) and a stable operation after 500 charge-discharge cycles (at 3 A/g). In contrast, the biomimetic synthesis of Free PANI, assisted by stabilized hematin in cosolvents, exhibited lower performance properties (65%). Due to their structural differences, the electrochemical properties of Free PANI (conductivity of 0.0045 S/cm and Cs of up to 82 F/g at 5 A/g) were lower than those of nanostructured PANI/g-POCN and g-OCN supports, which provide stability and improve the properties of biomimetically synthesized PANI. This work reveals the biomimetic synthesis of PANI, assisted by hematin supported by modified carbon nitrides, as a promising strategy to produce nanostructured supercapacitors with high performance.

2.
Front Chem ; 10: 915264, 2022.
Article in English | MEDLINE | ID: mdl-35844638

ABSTRACT

It has been two decades since biomimetic synthesis of conducting polymers were first reported, however, the systematic investigation of how catalysts influence the properties of the conducting polymers has not been reported yet. In this paper, we report a comparative study between peroxidase-like catalyst, dopants, and their effect on the properties of poly (3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPY), and polyaniline (PANI). We also investigate the EDOT-Pyrrole and EDOT-Aniline copolymerization by enzymomimetic synthesis using two catalysts (Ferrocene and Hematin). It was found that, chemically, there are no detectable effects, only having small contributions in molar ratios greater than 0.7-0.3. Spectroscopic data provide solid evidence concerning the effect in the variation of the molar fractions, finding that, as the molar fraction of EDOT decreases, changes associated with loss of the conjugation of the structure and the oxidation state of the chains were observed. The electrical conductivity was considerably modified depending on the type of catalyst. Hematin produces conductive homopolymers and copolymers when doped with p-toluene sulfonic acid (TSA), while ferrocene produces low conductive copolymers under the same conditions. The mole fraction affects conductivity significantly, showing that as the EDOT fraction decreases, the conductivity drops drastically for both EDOT-PY and EDOT-ANI copolymers. The type of dopant also notably affects conductivity; the best values were obtained by doping with TSA, while the lowest were obtained when doping with polystyrene sulfonate (PSS). We also draw a biomimetic route to tailor the fundamental properties of conducting homopolymers and copolymers for their design and scaled-up production, as they have recently been found to have use in a broad range of applications.

3.
Polymers (Basel) ; 14(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35406280

ABSTRACT

The overuse of fossil-based resources to produce thermoplastic materials and rubbers is dramatically affecting the environment, reflected in its clearest way as global warming. As a way of reducing this, multiple efforts are being undertaken including the use of more sustainable alternatives, for instance, those of natural origin as the main feedstock alternative, therefore having a lower carbon footprint. Contributing to this goal, the synthesis of bio-based rubbers based on ß-myrcene and trans-ß-farnesene was addressed in this work. Polymyrcene (PM) and polyfarnesene (PF) were synthesized via coordination polymerization using a neodymium-based catalytic system, and their properties were compared to the conventional polybutadiene (PB) and polyisoprene (PI) also obtained via coordination polymerization. Moreover, different average molecular weights were also tested to elucidate the influence over the materials' properties. The crosslinking of the rubbers was carried out via conventional and efficient vulcanization routes, comparing the final properties of the crosslinking network of bio-based PM and PF with the conventional fossil-based PB and PI. Though the mechanical properties of the crosslinked rubbers improved as a function of molecular weight, the chemical structure of PM and PF (with 2 and 3 unsaturated double bonds, respectively) produced a crosslinking network with lower mechanical properties than those obtained by PB and PI (with 1 unsaturated double bond). The current work contributes to the understanding of improvements (in terms of crosslinking parameters) that are required to produce competitive rubber with good sustainability/performance balance.

4.
Polymers (Basel) ; 13(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34451239

ABSTRACT

The growing concern for environmental problems has motivated the use of materials obtained from bio-based resources such as cellulose nanocrystals which have a promising application acting as fillers or reinforcements of polymeric materials. In this context, in this article, plasma-induced polymerization is proposed as a strategy to modify nanocrystals at different plasma power intensities using ε-caprolactone and δ-decalactone to improve their compatibility with polymeric matrices. The characterization was carried out using techniques such as FTIR, TGA, XRD, XPS, and AFM, with which a successful functionalization was demonstrated without altering the inherent properties of the nanocrystals. The preparation of ABS nanocomposites was carried out with the modified nanoparticles and the evaluation of the mechanical properties indicates an increase in Young's modulus and yield stress under certain concentrations of modified cellulose nanocrystals.

5.
Polymers (Basel) ; 13(16)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34451347

ABSTRACT

This article proposes a process to prepare fully bio-based elastomer nanocomposites based on polyfarnesene and cellulose nanocrystals (CNC). To improve the compatibility of cellulose with the hydrophobic matrix of polyfarnesene, the surface of CNC was modified via plasma-induced polymerization, at different powers of the plasma generator, using a trans-ß-farnesene monomer in the plasma reactor. The characteristic features of plasma surface-modified CNC have been corroborated by spectroscopic (XPS) and microscopic (AFM) analyses. Moreover, the cellulose nanocrystals modified at 150 W have been selected to reinforce polyfarnesene-based nanocomposites, synthesized via an in-situ coordination polymerization using a neodymium-based catalytic system. The effect of the different loading content of nanocrystals on the polymerization behavior, as well as on the rheological aspects, was evaluated. The increase in the storage modulus with the incorporation of superficially modified nanocrystals was demonstrated by rheological measurements and these materials exhibited better properties than those containing pristine cellulose nanocrystals. Moreover, we elucidate that the viscoelastic moduli of the elastomer nanocomposites are aligned with power-law model systems with characteristic relaxation time scales similar to commercial nanocomposites, also implying tunable mechanical properties. In this foreground, our findings have important implications in the development of fully bio-based nanocomposites in close competition with the commercial stock, thereby producing alternatives in favor of sustainable materials.

6.
RSC Adv ; 10(60): 36531-36538, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-35517941

ABSTRACT

This article proposes a method to produce bio-elastomer nanocomposites, based on polyfarnesene or polymyrcene, reinforced with surface-modified graphene oxide (GO). The surface modification is performed by grafting alkylamines (octyl-, dodecyl-, and hexadecylamine) onto the surface of GO. The successful grafting was confirmed via spectroscopic (FTIR and Raman) and X-ray diffraction techniques. The estimated grafted amines appear to be around 30 wt%, as calculated via thermogravimetric analysis, increasing the inter-planar spacing among the nanosheets as a function of alkyl length in the amine. The resulting modified GOs were then used to prepare bio-elastomer nanocomposites via in situ coordination polymerization (using a ternary neodymium-based catalytic system), acting as reinforcing additives of polymyrcene and polyfarnesene. We demonstrated that the presence of the modified GO does not affect significantly the catalytic activity, nor the microstructure-control of the catalyst, which led to high cis-1,4 content bio-elastomers (>95%). Moreover, we show via rheometry that the presence of the modified-GO expands the capacity of the elastomer to store deformation or applied stress, as well as exhibit an activation energy an order of magnitude higher.

SELECTION OF CITATIONS
SEARCH DETAIL
...