Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Mol Biol Rep ; 51(1): 898, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115711

ABSTRACT

BACKGROUND: The nuclear envelope (NE), which is composed of the outer and inner nuclear membranes, the nuclear pore complex and the nuclear lamina, regulates a plethora of cellular processes, including those that restrict cancer development (genomic stability, cell cycle regulation, and cell migration). Thus, impaired NE is functionally related to tumorigenesis, and monitoring of NE alterations is used to diagnose cancer. However, the chronology of NE changes occurring during cancer evolution and the connection between them remained to be precisely defined, due to the lack of appropriate cell models. METHODS: The expression and subcellular localization of NE proteins (lamins A/C and B1 and the inner nuclear membrane proteins emerin and ß-dystroglycan [ß-DG]) during prostate cancer progression were analyzed, using confocal microscopy and western blot assays, and a prostate cancer cell system comprising RWPE-1 epithelial prostate cells and several prostate cancer cell lines with different invasiveness. RESULTS: Deformed nuclei and the mislocalization and low expression of lamin A/C, lamin B1, and emerin became more prominent as the invasiveness of the prostate cancer lines increased. Suppression of lamin A/C expression was an early event during prostate cancer evolution, while a more extensive deregulation of NE proteins, including ß-DG, occurred in metastatic prostate cells. CONCLUSIONS: The RWPE-1 cell line-based system was found to be suitable for the correlation of NE impairment with prostate cancer invasiveness and determination of the chronology of NE alterations during prostate carcinogenesis. Further study of this cell system would help to identify biomarkers for prostate cancer prognosis and diagnosis.


Subject(s)
Lamin Type A , Lamin Type B , Membrane Proteins , Nuclear Envelope , Nuclear Proteins , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Nuclear Envelope/metabolism , Cell Line, Tumor , Membrane Proteins/metabolism , Lamin Type B/metabolism , Lamin Type A/metabolism , Lamin Type A/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Dystroglycans/metabolism , Gene Expression Regulation, Neoplastic , Cell Nucleus/metabolism
2.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125644

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3) is the most common type of disease related to poly-glutamine (polyQ) repeats. Its hallmark pathology is related to the abnormal accumulation of ataxin 3 with a longer polyQ tract (polyQ-ATXN3). However, there are other mechanisms related to SCA3 progression that require identifying trait and state biomarkers for a more accurate diagnosis and prognosis. Moreover, the identification of potential pharmacodynamic targets and assessment of therapeutic efficacy necessitates valid biomarker profiles. The aim of this review was to identify potential trait and state biomarkers and their potential value in clinical trials. Our results show that, in SCA3, there are different fluid biomarkers involved in neurodegeneration, oxidative stress, metabolism, miRNA and novel genes. However, neurofilament light chain NfL and polyQ-ATXN3 stand out as the most prevalent in body fluids and SCA3 stages. A heterogeneity analysis of NfL revealed that it may be a valuable state biomarker, particularly when measured in plasma. Nonetheless, since it could be a more beneficial approach to tracking SCA3 progression and clinical trial efficacy, it is more convenient to perform a biomarker profile evaluation than to rely on only one.


Subject(s)
Biomarkers , Machado-Joseph Disease , Humans , Machado-Joseph Disease/genetics , Machado-Joseph Disease/metabolism , Machado-Joseph Disease/pathology , Ataxin-3/genetics , Ataxin-3/metabolism , Neurofilament Proteins/metabolism , Peptides/metabolism , Disease Progression , Oxidative Stress
3.
Pharmaceutics ; 16(8)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39204356

ABSTRACT

Delayed wound healing increases the wound's vulnerability to possible infections, which may have lethal outcomes. The treatments available can be effective, but the urgency is not fully encompassed. The drug repositioning strategy proposes effective alternatives for enhancing medical therapies for chronic diseases. Likewise, applying wound dressings as biodegradable membranes is extremely attractive due to their ease of application, therapeutic effectiveness, and feasibility in industrial manufacturing. This article aims to demonstrate the pleiotropic effects during insulin repositioning in wound closure by employing a biopolymeric membrane-type formulation with insulin. We prepared biopolymeric membranes with sodium alginate cross-linked with calcium chloride, supported in a mixture of xanthan gum and guar gum, and plasticized with glycerol and sorbitol. Human insulin was combined with poloxamer 188 as a protein stabilizing agent. Our investigation encompassed physicochemical and mechanical characterization, antioxidant and biological activity through antibacterial tests, cell viability assessments, and scratch assays as an in vitro and in vivo wound model. We demonstrated that our biopolymeric insulin membranes exhibited adequate manipulation and suitable mechanical resistance, transparency, high swelling capability (1100%), and 30% antioxidant activity. Furthermore, they exhibited antibacterial activity (growth inhibition of S. aureus at 85% and P. aeruginosa at 75%, respectively), and insulin promoted wound closure in vitro with a 5.5-fold increase and 72% closure at 24 h. Also, insulin promoted in vivo wound closure with a 3.2-fold increase and 92% closure at 10 days compared with the groups without insulin, and this is the first report that demonstrates this therapeutic effect with two administrations of 0.7 IU. In conclusion, we developed a multifunctional insulin-loaded biopolymeric membrane in this study, with the main activity derived from insulin's role in wound closure and antioxidant activity, augmented by the antimicrobial effect attributed to the polymer poloxamer 188. The synergistic combination of excipients enhances its usefulness and highlights our innovation as a promising material in wound healing materials.

4.
Carbohydr Polym ; 336: 122121, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670753

ABSTRACT

This study aimed to modify chitosan (CS) by gamma irradiation and use it as a surface coating of nanoparticles (NPs) fabricated of poly lactic-co-glycolic acid (PLGA) to create mostly biocompatible nanosystems that can transport drugs to neurons. Gamma irradiation produced irradiated CS (CSγ) with a very low molecular weight (15.2-19.2 kDa). Coating NPs-PLGA with CSγ caused significant changes in their Z potential, making it slightly positive (from -21.7 ± 2.8 mV to +7.1 ± 2.3 mV) and in their particle size (184.4 0.4 ± 7.9 nm to 211.9 ± 14.04 nm). However, these changes were more pronounced in NPs coated with non-irradiated CS (Z potential = +54.0 ± 1.43 mV, size = 348.1 ± 16.44 nm). NPs coated with CSγ presented lower cytotoxicity and similar internalization levels in SH-SY5Y neuronal cells than NPs coated with non-irradiated CS, suggesting higher biocompatibility. Highly biocompatible NPs are desirable as nanocarriers to deliver drugs to the brain, as they help maintain the structure and function of the blood-brain barrier. Therefore, the NPs developed in this study could be evaluated as drug-delivery systems for treating brain diseases.


Subject(s)
Chitosan , Nanoparticles , Neurons , Polylactic Acid-Polyglycolic Acid Copolymer , Chitosan/chemistry , Humans , Nanoparticles/chemistry , Neurons/drug effects , Neurons/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Drug Carriers/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Particle Size , Gamma Rays
5.
Cells ; 12(23)2023 11 30.
Article in English | MEDLINE | ID: mdl-38067163

ABSTRACT

Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant inherited disease characterized by progressive ataxia and retinal degeneration. SCA7 belongs to a group of neurodegenerative diseases caused by an expanded CAG repeat in the disease-causing gene, resulting in aberrant polyglutamine (polyQ) protein synthesis. PolyQ ataxin-7 is prone to aggregate in intracellular inclusions, perturbing cellular processes leading to neuronal death in specific regions of the central nervous system (CNS). Currently, there is no treatment for SCA7; however, a promising approach successfully applied to other polyQ diseases involves the clearance of polyQ protein aggregates through pharmacological activation of autophagy. Nonetheless, the blood-brain barrier (BBB) poses a challenge for delivering drugs to the CNS, limiting treatment effectiveness. This study aimed to develop a polymeric nanocarrier system to deliver therapeutic agents across the BBB into the CNS. We prepared poly(lactic-co-glycolic acid) nanoparticles (NPs) modified with Poloxamer188 and loaded with rapamycin to enable NPs to activate autophagy. We demonstrated that these rapamycin-loaded NPs were successfully taken up by neuronal and glial cells, demonstrating high biocompatibility without adverse effects. Remarkably, rapamycin-loaded NPs effectively cleared mutant ataxin-7 aggregates in a SCA7 glial cell model, highlighting their potential as a therapeutic approach to fight SCA7 and other polyQ diseases.


Subject(s)
Spinocerebellar Ataxias , Humans , Ataxin-7/genetics , Ataxin-7/metabolism , Spinocerebellar Ataxias/drug therapy , Spinocerebellar Ataxias/genetics , Neurons/metabolism , Neuroglia/metabolism , Sirolimus
6.
Int J Mol Sci ; 24(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38003659

ABSTRACT

Polyamines (Pas) are short molecules that exhibit two or three amine groups that are positively charged at a physiological pH. These small molecules are present in high concentrations in a wide variety of organisms and tissues, suggesting that they play an important role in cellular physiology. Polyamines include spermine, spermidine, and putrescine, which play important roles in age-related diseases that have not been completely elucidated. Aging is a natural process, defined as the time-related deterioration of the physiological functions; it is considered a risk factor for degenerative diseases such as cardiovascular, neurodegenerative, and musculoskeletal diseases; arthritis; and even cancer. In this review, we provide a new perspective on the participation of Pas in the cellular and molecular processes related to age-related diseases, focusing our attention on important degenerative diseases such as Alzheimerߣs disease, Parkinsonߣs disease, osteoarthritis, sarcopenia, and osteoporosis. This new perspective leads us to propose that Pas function as novel biomarkers for age-related diseases, with the main purpose of achieving new molecular alternatives for healthier aging.


Subject(s)
Polyamines , Spermidine , Spermine/physiology , Putrescine
7.
Cell Mol Biol (Noisy-le-grand) ; 69(7): 24-27, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37715439

ABSTRACT

In recent years, increasing interest has been paid to using antibody-based therapies for clinical applications. However, it is unclear whether recombinant antibodies can be combined with other scientific approaches to generate innovative solutions for mitigating severe acute respiratory syndrome coronavirus 2. In this context, the increase in this virus transmission, the number of infected people, and the interaction between social and biological processes have led to a syndemic, exacerbating the public health problem. Here, we argue about recent advances in recombinant antibody strategies and the perspective of using them to face this syndemic. Thus, the most promising methods in sample readiness, potency, and reduction of manufacturing time frame have been highlighted.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Syndemic , Public Health
8.
Pharmaceutics ; 15(7)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37514100

ABSTRACT

Wound healing is a complex process that involves restoring the structure of damaged tissues through four phases: hemostasis, inflammation, proliferation, and remodeling. Wound dressings are the most common treatment used to cover wounds, reduce infection risk and the loss of physiological fluids, and enhance wound healing. Despite there being several types of wound dressings based on different materials and fabricated through various techniques, polymeric films have been widely employed due to their biocompatibility and low immunogenicity. Furthermore, they are non-invasive, easy to apply, allow gas exchange, and can be transparent. Among different methods for designing polymeric films, solvent casting represents a reliable, preferable, and highly used technique due to its easygoing and relatively low-cost procedure compared to sophisticated methods such as spin coating, microfluidic spinning, or 3D printing. Therefore, this review focuses on the polymeric dressings obtained using this technique, emphasizing the critical manufacturing factors related to pharmaceuticals, specifically discussing the formulation variables necessary to create wound dressings that demonstrate effective performance.

9.
Healthcare (Basel) ; 11(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37510511

ABSTRACT

Lamellar ichthyosis (LI) is a genodermatosis that injures the structure and function of the skin, affecting the appearance and self-esteem of patients, which may seriously impair their mental health and quality of life. In the present study, we determined anxiety, depression, and suicidal risk levels in patients with LI through the Beck anxiety and depression inventories (BAI and DBI-II, respectively) and the SAD PERSONS scale (SPS). We observed that anxiety, depression, and suicidal ideation were strongly associated with the LI (Cramér's V = 0.429, 0.594, and 0.462, respectively). Furthermore, patients with LI showed a significant increase in the scores of anxiety, depression, and suicidal risk (p = 0.011, <0.001, and 0.001, respectively) compared to individuals without the disease. Additionally, the suicide risk increased even more in patients who presented comorbidity of anxiety and depression than in patients who presented only anxiety or depression (p = 0.02). Similarly, the increase in the BAI scores correlated with the score observed on the SPS. Our results indicate that patients with LI have higher levels of anxiety and depression compared to individuals without the disease, which could be associated with suicidal risk. Therefore, the collaborative involvement of skin and mental health professionals is necessary to manage patients with LI appropriately. We believe that psychiatric studies and individual evaluations must be performed in LI patients to determine a treatment that, in addition to reducing skin symptoms, focuses on reducing the levels of depression and anxiety and improving the quality of life to reduce the risk of suicide.

10.
Pharmaceutics ; 15(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37376043

ABSTRACT

This work proposes a combination of polyethylene glycol 400 (PEG) and trehalose as a surface modification approach to enhance PLGA-based nanoparticles as a drug carrier for neurons. PEG improves nanoparticles' hydrophilicity, and trehalose enhances the nanoparticle's cellular internalization by inducing a more auspicious microenvironment based on inhibiting cell surface receptor denaturation. To optimize the nanoprecipitation process, a central composite design was performed; nanoparticles were adsorbed with PEG and trehalose. PLGA nanoparticles with diameters smaller than 200 nm were produced, and the coating process did not considerably increase their size. Nanoparticles entrapped curcumin, and their release profile was determined. The nanoparticles presented a curcumin entrapment efficiency of over 40%, and coated nanoparticles reached 60% of curcumin release in two weeks. MTT tests and curcumin fluorescence, with confocal imaging, were used to assess nanoparticle cytotoxicity and cell internalization in SH-SY5Y cells. Free curcumin 80 µM depleted the cell survival to 13% at 72 h. Contrariwise, PEG:Trehalose-coated curcumin-loaded and non-loaded nanoparticles preserved cell survival at 76% and 79% under the same conditions, respectively. Cells incubated with 100 µM curcumin or curcumin nanoparticles for 1 h exhibited 13.4% and 14.84% of curcumin's fluorescence, respectively. Moreover, cells exposed to 100 µM curcumin in PEG:Trehalose-coated nanoparticles for 1 h presented 28% fluorescence. In conclusion, PEG:Trehalose-adsorbed nanoparticles smaller than 200 nm exhibited suitable neural cytotoxicity and increased cell internalization proficiency.

11.
J Microbiol Immunol Infect ; 56(5): 939-950, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37365052

ABSTRACT

BACKGROUND/PURPOSE(S): During a viral infection, the immune response is mediated by the toll-like receptors and myeloid differentiation Factor 88 (MyD88) that play an important role sensing infections such as SARS-CoV-2 which has claimed the lives of more than 6.8 million people around the world. METHODS: We carried out a cross-sectional with a population of 618 SARS-CoV-2-positive unvaccinated subjects and further classified based on severity: 22% were mild, 34% were severe, 26% were critical, and 18% were deceased. Toll Like Receptor 7 (TLR7) single-nucleotide polymorphisms (rs3853839, rs179008, rs179009, and rs2302267) and MyD88 (rs7744) were genotyped using TaqMan OpenArray. The association of polymorphisms with disease outcomes was performed by logistic regression analysis adjusted by covariates. RESULTS: A significant association of rs3853839 and rs7744 of the TLR7 and MyD88 genes, respectively, was found with COVID-19 severity. The G/G genotype of the rs3853839 TLR7 was associated with the critical outcome showing an Odd Ratio = 1.98 (95% IC = 1.04-3.77). The results highlighted an association of the G allele of MyD88 gene with severe, critical and deceased outcomes. Furthermore, in the dominant model (AG + GG vs. AA), we observed an Odd Ratio = 1.70 (95% CI = 1.02-2.86) with severe, Odd Ratio = 1.82 (95% CI = 1.04-3.21) with critical, and Odd Ratio = 2.44 (95% CI = 1.21-4.9) with deceased outcomes. CONCLUSION: To our knowledge this work represents an innovative report that highlights the significant association of TLR7 and MyD88 gene polymorphisms with COVID-19 outcomes and the possible implication of the MyD88 variant with D-dimer and IFN-α concentrations.


Subject(s)
COVID-19 , Toll-Like Receptor 7 , Humans , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Genetic Predisposition to Disease , Myeloid Differentiation Factor 88/genetics , Cross-Sectional Studies , COVID-19/genetics , SARS-CoV-2 , Genotype , Polymorphism, Single Nucleotide/genetics
12.
Nanomaterials (Basel) ; 13(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37242034

ABSTRACT

(-)-Epicatechin and quercetin have attracted considerable attention for their potential therapeutic application in non-communicable chronic diseases. A novel hybrid inulin-soy protein nanoparticle formulation was simultaneously loaded with (-)-epicatechin and quercetin (NEQs) to improve the bioavailability of these flavonoids in the human body, and NEQs were synthesized by spray drying. After process optimization, the physicochemical and functional properties of NEQs were characterized including in vitro release, in vitro gastrointestinal digestion, and cell viability assays. Results showed that NEQs are an average size of 280.17 ± 13.42 nm and have a zeta potential of -18.267 ± 0.83 mV in the organic phase. Encapsulation efficiency of (-)-epicatechin and quercetin reached 97.04 ± 0.01 and 92.05 ± 1.95%, respectively. A 3.5% soy protein content conferred controlled release characteristics to the delivery system. Furthermore, NEQs presented inhibitory effects in Caco-2, but not in HepG-2 and HDFa cell lines. These results contribute to the design and fabrication of inulin-soy protein nanoparticles for improving the bioavailability of multiple bioactive compounds with beneficial properties.

13.
Cells ; 12(2)2023 01 10.
Article in English | MEDLINE | ID: mdl-36672210

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder caused by the expression of progerin, a mutant variant of Lamin A. Recently, HGPS studies have gained relevance because unraveling its underlying mechanism would help to understand physiological aging. We previously reported that the CRM1-mediated nuclear protein export pathway is exacerbated in HGPS cells, provoking the mislocalization of numerous protein targets of CRM1. We showed that normalization of this mechanism by pharmacologically inhibiting CRM1 with LMB (specific CRM1 inhibitor), mitigates the senescent phenotype of HGPS cells. Since mitochondrial dysfunction is a hallmark of HGPS, in this study we analyze the effect of LMB on mitochondrial function. Remarkably, LMB treatment induced the recovery of mitochondrial function in HGPS cells, as shown by the improvement in mitochondrial morphology, mitochondrial membrane potential, and ATP levels, which consequently impeded the accumulation of ROS but not mitochondrial superoxide. We provide evidence that the beneficial effect of LMB is mechanistically based on a combinatory effect on mitochondrial biogenesis via upregulation of PGC-1α expression (master transcription cofactor of mitochondrial genes), and mitophagy through the recovery of lysosomal content. The use of exportin CRM1 inhibitors constitutes a promising strategy to treat HGPS and other diseases characterized by mitochondrial impairment.


Subject(s)
Aging, Premature , Progeria , Humans , Progeria/drug therapy , Progeria/genetics , Progeria/metabolism , Karyopherins/metabolism , Aging, Premature/genetics , Cell Nucleus/metabolism , Mitochondria/metabolism
14.
Cerebellum ; 22(4): 708-718, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35796998

ABSTRACT

Little is known about access of rare disease carriers to health care. To increase this knowledge, the Pan American Hereditary Ataxia Network (PAHAN) conducted an exploratory survey about care for hereditary ataxias in American continents and the Caribbean. A questionnaire was sent to health professionals about the hereditary ataxias identified; access to care; and local teaching and research. The number of ataxics under current care per 100,000 inhabitants was subtracted from the expected overall prevalence of 6/100,000, to estimate the prevalence of uncovered ataxic patients. Local Human Development Indexes (HDI) were used to measure socio-economic factors. Twenty-six sites participated. Twelve sites had very high, 13 had high, and one site had medium HDI. Participants reported on 2239 and 602 patients with spinocerebellar ataxias and recessive forms under current care. The number of patients under current care per inhabitants varied between 0.14 and 12/100,000. The estimated prevalence of uncovered ataxic patients was inversely proportional to HDIs (rho = 0.665, p = 0.003). Access to diagnosis, pre-symptomatic tests, and rehabilitation were associated with HDIs. More and better molecular diagnostic tools, protocols and guidelines, and professional training for ataxia care were the top priorities common to all respondents. Evidence of inequalities was confirmed. Lower HDIs were associated with high potential numbers of uncovered ataxic subjects, and with lack of molecular diagnosis, pre-symptomatic testing, and rehabilitation. More and better diagnostic tools, guidelines, and professional training were priorities to all sites. PAHAN consortium might help with the last two tasks.


Subject(s)
Cerebellar Ataxia , Spinocerebellar Ataxias , Spinocerebellar Degenerations , Humans , Ataxia , Spinocerebellar Degenerations/epidemiology , Spinocerebellar Ataxias/diagnosis , Spinocerebellar Ataxias/epidemiology , Spinocerebellar Ataxias/genetics , Caribbean Region/epidemiology
15.
Int J Mol Sci ; 25(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38203252

ABSTRACT

The emergence of bacterial strains displaying resistance to the currently available antibiotics is a critical global concern. These resilient bacteria can form biofilms that play a pivotal role in the failure of bacterial infection treatments as antibiotics struggle to penetrate all biofilm regions. Consequently, eradicating bacteria residing within biofilms becomes considerably more challenging than their planktonic counterparts, leading to persistent and chronic infections. Among various approaches explored, essential oils loaded in nanoparticles based on biopolymers have emerged, promising strategies that enhance bioavailability and biological activities, minimize side effects, and control release through regulated pharmacokinetics. Different available reviews analyze nanosystems and essential oils; however, usually, their main goal is the analysis of their antimicrobial properties, and progress in biofilm combat is rarely discussed, or it is not the primary objective. This review aims to provide a global vision of biofilm conformation and describes mechanisms of action attributed to each EO. Furthermore, we present a comprehensive overview of the latest developments in biopolymeric nanoparticles research, especially in chitosan- and zein-based nanosystems, targeting multidrug-resistant bacteria in both their sessile and biofilm forms, which will help to design precise strategies for combating biofilms.


Subject(s)
Nanoparticles , Oils, Volatile , Anti-Bacterial Agents/pharmacology , Biofilms , Biological Availability
16.
Front Immunol ; 13: 936106, 2022.
Article in English | MEDLINE | ID: mdl-36341434

ABSTRACT

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection triggers inflammatory clinical stages that affect the outcome of patients with coronavirus disease 2019 (COVID-19). Disease severity may be associated with a metabolic imbalance related to amino acids, lipids, and energy-generating pathways. The aim of this study was to characterize the profile of amino acids and acylcarnitines in COVID-19 patients. A multicenter, cross-sectional study was carried out. A total of 453 individuals were classified by disease severity. Levels of 11 amino acids, 31 acylcarnitines, and succinylacetone in serum samples were analyzed by electrospray ionization-triple quadrupole tandem mass spectrometry. Different clusters were observed in partial least squares discriminant analysis, with phenylalanine, alanine, citrulline, proline, and succinylacetone providing the major contribution to the variability in each cluster (variable importance in the projection >1.5). In logistic models adjusted by age, sex, type 2 diabetes mellitus, hypertension, and nutritional status, phenylalanine was associated with critical outcomes (odds ratio=5.3 (95% CI 3.16-9.2) in the severe vs. critical model, with an area under the curve of 0.84 (95% CI 0.77-0.90). In conclusion the metabolic imbalance in COVID-19 patients might affect disease progression. This work shows an association of phenylalanine with critical outcomes in COVID-19 patients, highlighting phenylalanine as a potential metabolic biomarker of disease severity.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Humans , SARS-CoV-2 , Cross-Sectional Studies , Amino Acids , Phenylalanine
17.
RSC Adv ; 12(34): 21713-21724, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36043115

ABSTRACT

The search for materials and process parameters capable of generating hydrogels for soft tissue engineering applications, based on an experimental design strategy that allows the evaluation of several factors involved in their development and performance, has greatly increased. Nevertheless, the fabrication technique can influence their mechanical properties, swelling, crystallinity, and even their susceptibility to contamination by microorganisms, compromising their performance within the tissue or organ. This study aimed to evaluate the influence of the freeze/thaw technique on different characteristics of polyvinyl alcohol-xanthan gum hydrogel. Methods: this research analyzed the critical variables of the freeze/thaw process through a systematic study of a 2 k factorial design of experiments, such as the proportion and concentration of polymers, freezing time and temperature, and freeze/thaw cycles. Additionally, physicochemical analysis, susceptibility to bacterial growth, and cell viability tests were included to approximate its cytotoxicity. The optimized hydrogel consisted of polyvinyl alcohol and xanthan gum at a 95 : 5 ratio, polymer mixture concentration of 15%, and 12 h of freezing with three cycles of freeze/thaw. The hydrogel was crystalline, flexible, and resistant, with tensile strengths ranging from 9 to 87 kPa. The hydrogel was appropriate for developing scaffolds for soft tissue engineering such as the cardiac and skeletal muscle, dermis, thyroid, bladder, and spleen. Also, the hydrogel did not expose an in vitro cytotoxic effect, rendering it a candidate for biomedical applications.

18.
Animals (Basel) ; 12(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35883404

ABSTRACT

Genetic analysis is a conventional way of identifying and monitoring captive and wildlife species. Knowledge of statistical parameters reinforcing their usefulness and effectiveness as powerful tools for preserving diversity is crucial. Although several studies have reported the diversity of cetaceans such as Tursiops truncatus using microsatellites, its informative degree has been poorly reported. Furthermore, the genetic structure of this cetacean has not been fully studied. In the present study, we selected 15 microsatellites with which 210 dolphins were genetically characterized using capillary electrophoresis. The genetic assertiveness of this set of hypervariable markers identified one individual in the range of 6.927e13 to 1.806e16, demonstrating its substantial capability in kinship relationships. The genetic structure of these 210 dolphins was also determined regarding the putative capture origin; a genetic stratification (k = 2) was found. An additional dolphin group of undetermined origin was also characterized to challenge the proficiency of our chosen markers. The set of markers proposed herein could be a helpful tool to guarantee the maintenance of the genetic diversity rates in conservation programs both in Tursiops truncatus and across other odontocetes, Mysticeti and several genera of endangered and vulnerable species.

19.
Front Immunol ; 13: 812940, 2022.
Article in English | MEDLINE | ID: mdl-35250987

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current coronavirus disease 2019 (COVID-19) pandemic, affecting more than 219 countries and causing the death of more than 5 million people worldwide. The genetic background represents a factor that predisposes the way the host responds to SARS-CoV-2 infection. In this sense, genetic variants of ACE and ACE2 could explain the observed interindividual variability to COVID-19 outcomes. In order to improve the understanding of how genetic variants of ACE and ACE2 are involved in the severity of COVID-19, we included a total of 481 individuals who showed clinical manifestations of COVID-19 and were diagnosed by reverse transcription PCR (RT-PCR). Genomic DNA was extracted from peripheral blood and saliva samples. ACE insertion/deletion polymorphism was evaluated by the high-resolution melting method; ACE single-nucleotide polymorphism (SNP) (rs4344) and ACE2 SNPs (rs2285666 and rs2074192) were genotyped using TaqMan probes. We assessed the association of ACE and ACE2 polymorphisms with disease severity using logistic regression analysis adjusted by age, sex, hypertension, type 2 diabetes, and obesity. The severity of the illness in our study population was divided as 31% mild, 26% severe, and 43% critical illness; additionally, 18% of individuals died, of whom 54% were male. Our results showed in the codominant model a contribution of ACE2 gene rs2285666 T/T genotype to critical outcome [odds ratio (OR) = 1.83; 95%CI = 1.01-3.29; p = 0.04] and to require oxygen supplementation (OR = 1.76; 95%CI = 1.01-3.04; p = 0.04), in addition to a strong association of the T allele of this variant to develop critical illness in male individuals (OR = 1.81; 95%CI = 1.10-2.98; p = 0.02). We suggest that the T allele of rs2285666 represents a risk factor for severe and critical outcomes of COVID-19, especially for men, regardless of age, hypertension, obesity, and type 2 diabetes.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Peptidyl-Dipeptidase A/genetics , Polymorphism, Single Nucleotide/genetics , Alleles , COVID-19/virology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/virology , Genotype , Humans , Male , SARS-CoV-2/pathogenicity
20.
Genes (Basel) ; 13(1)2022 01 16.
Article in English | MEDLINE | ID: mdl-35052497

ABSTRACT

Spinocerebellar ataxias (SCAs) conform a heterogeneous group of neurodegenerative disorders with autosomal dominant inheritance. Five of the most frequent SCAs are caused by a CAG repeat expansion in the exons of specific genes. The SCAs incidence and the distribution of polymorphic CAG alleles vary among populations and ethnicities. Thus, characterization of the genetic architecture of ethnically diverse populations, which have undergone recent admixture and demographic events, could facilitate the identification of genetic risk factors. Owing to the great ethnic diversity of the Mexican population, this study aimed to analyze the allele frequencies of five SCA microsatellite loci (SCA1, SCA2, SCA3, SCA6, and SCA7) in eleven Mexican Native American (MNA) populations. Data from the literature were used to compare the allelic distribution of SCA loci with worldwide populations. The SCA loci allelic frequencies evidenced a certain genetic homogeneity in the MNA populations, except for Mayans, who exhibited distinctive genetic profiles. Neither pathological nor large normal alleles were found in MNA populations, except for the SCA2 pre-mutated allele in the Zapotec population. Collectively, our findings demonstrated the contribution of the MNA ancestry in shaping the genetic structure of contemporary Mexican Mestizo populations. Our results also suggest that Native American ancestry has no impact on the origin of SCAs in the Mexican population. Instead, the acquisition of pathological SCA alleles could be associated with European migration.


Subject(s)
American Indian or Alaska Native/genetics , Ataxin-1/genetics , Ethnicity/genetics , Genetics, Population , Microsatellite Repeats , Spinocerebellar Ataxias/genetics , Trinucleotide Repeat Expansion , Gene Frequency , Humans , Mexico/epidemiology , Spinocerebellar Ataxias/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL