Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IUBMB Life ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38014654

ABSTRACT

Mesenchymal stem cells (MSCs) are a therapeutically efficient type of stem cells validated by their ability to treat many inflammatory and chronic conditions. The biological and therapeutic characteristics of MSCs can be modified depending on the type of microenvironment at the site of transplantation. Diabetes mellitus (DM) is a commonly diagnosed metabolic disease characterized by hyperglycemia, which alters over time the cellular and molecular functions of many cells and causes their damage. Hyperglycemia can also impact the success rate of MSCs transplantation; therefore, it is extremely significant to investigate the effect of high glucose on the biological and therapeutic attributes of MSCs, particularly their immunomodulatory abilities. Thus, in this study, we explored the effect of high glucose on the immunosuppressive characteristics of human adipose tissue-derived mesenchymal stem cells (hAD-MSCs). We found that hAD-MSCs cultured in high glucose lost their immunomodulatory abilities and became detectable by immune cells. The decline in the immunosuppressive capabilities of hAD-MSCs was mediated by significant decrease in the levels of IDO, IL-10, and complement factor H and substantial increase in the activity of immunoproteasome. The protein levels of AMP-activated protein kinase (AMPK) and phosphofructokinase-1 (PFK-1), which are integral regulators of glycolysis, revealed a marked decline in high glucose exposed MSCs. The findings of our study indicated the possibility of immunomodulatory shift in MSCs after being cultured in high glucose, which can be translationally employed to explain their poor survival and short-lived therapeutic outcomes in diabetic patients.

2.
World J Stem Cells ; 15(12): 1093-1103, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38179215

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) are a type of stem cells that possess relevant regenerative abilities and can be used to treat many chronic diseases. Diabetes mellitus (DM) is a frequently diagnosed chronic disease characterized by hyperglycemia which initiates many multisystem complications in the long-run. DM patients can benefit from MSCs transplantation to curb down the pathological consequences associated with hyperglycemia persistence and restore the function of damaged tissues. MSCs therapeutic outcomes are found to last for short period of time and ultimately these regenerative cells are eradicated and died in DM disease model. AIM: To investigate the impact of high glucose or hyperglycemia on the cellular and molecular characteristics of MSCs. METHODS: Human adipose tissue-derived MSCs (hAD-MSCs) were seeded in low (5.6 mmol/L of glucose) and high glucose (25 mmol/L of glucose) for 7 d. Cytotoxicity, viability, mitochondrial dynamics, and apoptosis were deplored using specific kits. Western blotting was performed to measure the protein expression of phosphatidylinositol 3-kinase (PI3K), TSC1, and mammalian target of rapamycin (mTOR) in these cells. RESULTS: hAD-MSCs cultured in high glucose for 7 d demonstrated marked decrease in their viability, as shown by a significant increase in lactate dehydrogenase (P < 0.01) and a significant decrease in Trypan blue (P < 0.05) in these cells compared to low glucose control. Mitochondrial membrane potential, indicated by tetramethylrhodamine ethyl ester (TMRE) fluorescence intensity, and nicotinamide adenine dinucleotide (NAD+)/NADH ratio were significantly dropped (P < 0.05 for TMRE and P < 0.01 for NAD+/NADH) in high glucose exposed hAD-MSCs, indicating disturbed mitochondrial function. PI3K protein expression significantly decreased in high glucose culture MSCs (P < 0.05 compared to low glucose) and it was coupled with significant upregulation in TSC1 (P < 0.05) and downregulation in mTOR protein expression (P < 0.05). Mitochondrial complexes I, IV, and V were downregulated profoundly in high glucose (P < 0.05 compared to low glucose). Apoptosis was induced as a result of mitochondrial impairment and explained the poor survival of MSCs in high glucose. CONCLUSION: High glucose impaired the mitochondrial dynamics and regulatory proteins in hAD-MSCs ensuing their poor survival and high apoptosis rate in hyperglycemic microenvironment.

SELECTION OF CITATIONS
SEARCH DETAIL
...