Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 11(1): 17, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36670467

ABSTRACT

Although Huntington's disease (HD) is classically defined by the selective vulnerability of striatal projection neurons, there is increasing evidence that cerebellar degeneration modulates clinical symptoms. However, little is known about cell type-specific responses of cerebellar neurons in HD. To dissect early disease mechanisms in the cerebellum and cerebrum, we analyzed translatomes of neuronal cell types from both regions in a new HD mouse model. For this, HdhQ200 knock-in mice were backcrossed with the calm 129S4 strain, to constrain experimental noise caused by variable hyperactivity of mice in a C57BL/6 background. Behavioral and neuropathological characterization showed that these S4-HdhQ200 mice had very mild behavioral abnormalities starting around 12 months of age that remained mild up to 18 months. By 9 months, we observed abundant Huntingtin-positive neuronal intranuclear inclusions (NIIs) in the striatum and cerebellum. The translatome analysis of GABAergic cells of the cerebrum further confirmed changes typical of HD-induced striatal pathology. Surprisingly, we observed the strongest response with 626 differentially expressed genes in glutamatergic neurons of the cerebellum, a population consisting primarily of granule cells, commonly considered disease resistant. Our findings suggest vesicular fusion and exocytosis, as well as differentiation-related pathways are affected in these neurons. Furthermore, increased expression of cyclin D1 (Ccnd1) in the granular layer and upregulated expression of polycomb group complex protein genes and cell cycle regulators Cbx2, Cbx4 and Cbx8 point to a putative role of aberrant cell cycle regulation in cerebellar granule cells in early disease.


Subject(s)
Huntington Disease , Mice , Animals , Huntington Disease/metabolism , Cyclin D1/metabolism , Mice, Inbred C57BL , Interneurons/pathology , Neurons/metabolism , Corpus Striatum , Disease Models, Animal , Mice, Transgenic , Huntingtin Protein/genetics , Huntingtin Protein/metabolism
2.
Brain ; 145(9): 3236-3249, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35446941

ABSTRACT

The metazoan Hsp70 disaggregase protects neurons from proteotoxicity that arises from the accumulation of misfolded protein aggregates. Hsp70 and its co-chaperones disassemble and extract polypeptides from protein aggregates for refolding or degradation. The effectiveness of the chaperone system decreases with age and leads to accumulation rather than removal of neurotoxic protein aggregates. Therapeutic enhancement of the Hsp70 protein disassembly machinery is proposed to counter late-onset protein misfolding neurodegenerative disease that may arise. In the context of prion disease, it is not known whether stimulation of protein aggregate disassembly paradoxically leads to enhanced formation of seeding competent species of disease-specific proteins and acceleration of neurodegenerative disease. Here we have tested the hypothesis that modulation of Hsp70 disaggregase activity perturbs mammalian prion-induced neurotoxicity and prion seeding activity. To do so we used prion protein (PrP) transgenic Drosophila that authentically replicate mammalian prions. RNASeq identified that Hsp70, DnaJ-1 and Hsp110 gene expression was downregulated in prion-exposed PrP Drosophila. We demonstrated that RNAi knockdown of Hsp110 or DnaJ-1 gene expression in variant Creutzfeldt-Jakob disease prion-exposed human PrP Drosophila enhanced neurotoxicity, whereas overexpression mitigated toxicity. Strikingly, prion seeding activity in variant Creutzfeldt-Jakob disease prion-exposed human PrP Drosophila was ablated or reduced by Hsp110 or DnaJ-1 overexpression, respectively. Similar effects were seen in scrapie prion-exposed ovine PrP Drosophila with modified Hsp110 or DnaJ-1 gene expression. These unique observations show that the metazoan Hsp70 disaggregase facilitates the clearance of mammalian prions and that its enhanced activity is a potential therapeutic strategy for human prion disease.


Subject(s)
Creutzfeldt-Jakob Syndrome , Neurodegenerative Diseases , Prion Diseases , Prions , Animals , Drosophila/metabolism , HSP70 Heat-Shock Proteins/metabolism , Humans , Prion Proteins/metabolism , Prions/genetics , Protein Aggregates , Sheep
3.
Proc Natl Acad Sci U S A ; 111(13): 4898-903, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24707047

ABSTRACT

Drosophila melanogaster larval hematopoiesis is a well-established model to study mechanisms that regulate hematopoietic niche maintenance and control of blood cell precursor (prohemocyte) differentiation. Molecules that perturb niche function affect the balance between prohemocytes and differentiated hemocytes. The conserved hemocyte-specific endosomal protein Asrij is essential for niche function and prohemocyte maintenance. Elucidating how subcellular trafficking molecules can regulate signaling presents an important challenge. Here we show that Asrij function is mediated by the Ras family GTPase Arf79F, the Drosophila homolog of ADP ribosylation factor 1 (ARF1), essential for clathrin coat assembly, Golgi architecture, and vesicular trafficking. ARF1 is expressed in the larval lymph gland and in circulating hemocytes and interacts with Asrij. ARF1-depleted lymph glands show loss of niche cells and prohemocyte maintenance with increased differentiation. Inhibiting ARF1 activation by knocking down its guanine nucleotide exchange factor (Gartenzwerg) or overexpressing its GTPAse-activating protein showed that ARF1-GTP is essential for regulating niche size and maintaining stemness. Activated ARF1 regulates Asrij levels in blood cells thereby mediating Asrij function. Asrij controls crystal cell differentiation by affecting Notch trafficking. ARF1 perturbation also leads to aberrant Notch trafficking and the Notch intracellular domain is stalled in sorting endosomes. Thus, ARF1 can regulate Drosophila blood cell homeostasis by regulating Asrij endocytic function. ARF1 also regulates signals arising from the niche and differentiated cells by integrating the insulin-mediated and PDGF-VEGF receptor signaling pathways. We propose that the conserved ARF1-Asrij endocytic axis modulates signals that govern hematopoietic development. Thus, Asrij affords tissue-specific control of global mechanisms involved in molecular traffic.


Subject(s)
Blood Cells/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Guanosine Triphosphate/metabolism , Homeostasis , Membrane Proteins/metabolism , Animals , Blood Cells/cytology , Cell Proliferation , Drosophila melanogaster/cytology , Hematopoiesis , Hemocytes/metabolism , Insulin/metabolism , Larva/cytology , Larva/metabolism , Lymph Nodes/metabolism , Phenotype , Protein Binding , Protein Transport , Receptors, Notch/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...