Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 17(6): e1009041, 2021 06.
Article in English | MEDLINE | ID: mdl-34133421

ABSTRACT

We present ten simple rules that support converting a legacy vocabulary-a list of terms available in a print-based glossary or in a table not accessible using web standards-into a FAIR vocabulary. Various pathways may be followed to publish the FAIR vocabulary, but we emphasise particularly the goal of providing a globally unique resolvable identifier for each term or concept. A standard representation of the concept should be returned when the individual web identifier is resolved, using SKOS or OWL serialised in an RDF-based representation for machine-interchange and in a web-page for human consumption. Guidelines for vocabulary and term metadata are provided, as well as development and maintenance considerations. The rules are arranged as a stepwise recipe for creating a FAIR vocabulary based on the legacy vocabulary. By following these rules you can achieve the outcome of converting a legacy vocabulary into a standalone FAIR vocabulary, which can be used for unambiguous data annotation. In turn, this increases data interoperability and enables data integration.


Subject(s)
Guidelines as Topic , Vocabulary, Controlled , Internet , Machine Learning
2.
Open Res Eur ; 1: 68, 2021.
Article in English | MEDLINE | ID: mdl-37645187

ABSTRACT

Research infrastructures play an increasingly essential role in scientific research. They provide rich data sources for scientists, such as services and software packages, via catalog and virtual research environments. However, such research infrastructures are typically domain-specific and often not connected. Accordingly, researchers and practitioners face fundamental challenges introduced by fragmented knowledge from heterogeneous, autonomous sources with complicated and uncertain relations in particular research domains. Additionally, the exponential growth rate of knowledge in a specific domain surpasses human experts' ability to formalize and capture tacit and explicit knowledge efficiently. Thus, a knowledge management system is required to discover knowledge effectively, automate the knowledge acquisition based on artificial intelligence approaches, integrate the captured knowledge, and deliver consistent knowledge to agents, research communities, and end-users. In this study, we present the development process of a knowledge management system for ENVironmental Research Infrastructures, which are crucial pillars for environmental scientists in their quest for understanding and interpreting the complex Earth System. Furthermore, we report the challenges we have faced and discuss the lessons learned during the development process.

SELECTION OF CITATIONS
SEARCH DETAIL
...