Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 137(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38578235

ABSTRACT

Endosomal-lysosomal trafficking is accompanied by the acidification of endosomal compartments by the H+-V-ATPase to reach low lysosomal pH. Disruption of the correct pH impairs lysosomal function and the balance of protein synthesis and degradation (proteostasis). Here, we treated mammalian cells with the small dipeptide LLOMe, which is known to permeabilize lysosomal membranes, and find that LLOMe also impacts late endosomes (LEs) by neutralizing their pH without causing membrane permeabilization. We show that LLOMe leads to hyperactivation of Rab7 (herein referring to Rab7a), and disruption of tubulation and mannose-6-phosphate receptor (CI-M6PR; also known as IGF2R) recycling on pH-neutralized LEs. pH neutralization (NH4Cl) and expression of Rab7 hyperactive mutants alone can both phenocopy the alterations in tubulation and CI-M6PR trafficking. Mechanistically, pH neutralization increases the assembly of the V1G1 subunit (encoded by ATP6V1G1) of the V-ATPase on endosomal membranes, which stabilizes GTP-bound Rab7 via RILP, a known interactor of Rab7 and V1G1. We propose a novel pathway by which V-ATPase and RILP modulate LE pH and Rab7 activation in concert. This pathway might broadly contribute to pH control during physiologic endosomal maturation or starvation and during pathologic pH neutralization, which occurs via lysosomotropic compounds and in disease states.


Subject(s)
Adaptor Proteins, Signal Transducing , Endosomes , Vacuolar Proton-Translocating ATPases , rab7 GTP-Binding Proteins , Animals , Humans , Endosomes/metabolism , HeLa Cells , Hydrogen-Ion Concentration , Lysosomes/metabolism , Protein Transport , Receptor, IGF Type 2/metabolism , Receptor, IGF Type 2/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics
2.
Nat Commun ; 15(1): 2698, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538595

ABSTRACT

Toxoplasma gondii is an obligate intracellular parasite of rodents and humans. Interferon-inducible guanylate binding proteins (GBPs) are mediators of T. gondii clearance, however, this mechanism is incomplete. Here, using automated spatially targeted optical micro proteomics we demonstrate that inducible nitric oxide synthetase (iNOS) is highly enriched at GBP2+ parasitophorous vacuoles (PV) in murine macrophages. iNOS expression in macrophages is necessary to limit T. gondii load in vivo and in vitro. Although iNOS activity is dispensable for GBP2 recruitment and PV membrane ruffling; parasites can replicate, egress and shed GBP2 when iNOS is inhibited. T. gondii clearance by iNOS requires nitric oxide, leading to nitration of the PV and collapse of the intravacuolar network of membranes in a chromosome 3 GBP-dependent manner. We conclude that reactive nitrogen species generated by iNOS cooperate with GBPs to target distinct structures in the PV that are necessary for optimal parasite clearance in macrophages.


Subject(s)
Toxoplasma , Vacuoles , Animals , Humans , Mice , Interferons/metabolism , Macrophages/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Toxoplasma/metabolism , Vacuoles/metabolism
3.
bioRxiv ; 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37398226

ABSTRACT

Cilia regeneration is a physiological event, and while studied extensively in unicellular organisms, it remains poorly understood in vertebrates. In this study, using Xenopus multiciliated cells (MCCs) as a model, we demonstrate that, unlike unicellular organisms, deciliation removes the transition zone (TZ) along with the ciliary axoneme. While MCCs immediately begin the regeneration of the ciliary axoneme, surprisingly, the assembly of TZ was delayed. Instead, ciliary tip proteins, Sentan and Clamp, were the first to localize to regenerating cilia. Using cycloheximide (CHX) to block new protein synthesis, we show that the TZ protein B9d1 is not a component of the cilia precursor pool and requires new transcription/translation providing insights into the delayed repair of TZ. Moreover, CHX treatment led MCCs to assemble fewer (~ ten compared to ~150 in controls) but about wild-type length (78% of WT) cilia by gradually concentrating ciliogenesis proteins like IFT43 at a select few basal bodies, highlighting the exciting possibility of protein transport between basal bodies to facilitate faster regeneration in cells with multiple cilia. In summary, we demonstrate that MCCs begin regeneration with the assembly of ciliary tip and axoneme followed by TZ, questioning the importance of TZ in motile ciliogenesis.

4.
Elife ; 112022 07 19.
Article in English | MEDLINE | ID: mdl-35852146

ABSTRACT

The nuclear envelope (NE) assembles and grows from bilayer lipids produced at the endoplasmic reticulum (ER). How ER membrane incorporation coordinates with assembly of nuclear pore complexes (NPCs) to generate a functional NE is not well understood. Here, we use the stereotypical first division of the early C. elegans embryo to test the role of the membrane-associated nucleoporin Ndc1 in coupling NPC assembly to NE formation and growth. 3D-EM tomography of reforming and expanded NEs establishes that Ndc1 determines NPC density. Loss of ndc1 results in faster turnover of the outer scaffold nucleoporin Nup160 at the NE, providing an explanation for how Ndc1 controls NPC number. NE formation fails in the absence of both Ndc1 and the inner ring component Nup53, suggesting partially redundant roles in NPC assembly. Importantly, upregulation of membrane synthesis restored the slow rate of nuclear growth resulting from loss of ndc1 but not from loss of nup53. Thus, membrane biogenesis can be decoupled from Ndc1-mediated NPC assembly to promote nuclear growth. Together, our data suggest that Ndc1 functions in parallel with Nup53 and membrane biogenesis to control NPC density and nuclear size.


Subject(s)
Nuclear Pore Complex Proteins , Nuclear Pore , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cell Nucleus/metabolism , Nuclear Envelope/metabolism , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...