Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Inform Decis Mak ; 24(1): 95, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622703

ABSTRACT

This study presents a workflow for identifying and characterizing patients with Heart Failure (HF) and multimorbidity utilizing data from Electronic Health Records. Multimorbidity, the co-occurrence of two or more chronic conditions, poses a significant challenge on healthcare systems. Nonetheless, understanding of patients with multimorbidity, including the most common disease interactions, risk factors, and treatment responses, remains limited, particularly for complex and heterogeneous conditions like HF. We conducted a clustering analysis of 3745 HF patients using demographics, comorbidities, laboratory values, and drug prescriptions. Our analysis revealed four distinct clusters with significant differences in multimorbidity profiles showing differential prognostic implications regarding unplanned hospital admissions. These findings underscore the considerable disease heterogeneity within HF patients and emphasize the potential for improved characterization of patient subgroups for clinical risk stratification through the use of EHR data.


Subject(s)
Heart Failure , Multimorbidity , Humans , Comorbidity , Heart Failure/diagnosis , Heart Failure/epidemiology , Cluster Analysis , Chronic Disease
2.
Nanomaterials (Basel) ; 11(4)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805004

ABSTRACT

The efficient photodegradation of textile dyes is still a challenge, especially considering resistant azo dyes. In this work, zinc/calcium mixed ferrite nanoparticles prepared by the sol-gel method were coupled with silver by a photodeposition method to enhance the photocatalytic potency. The obtained zinc/calcium ferrites are mainly cubic-shaped nanoparticles sized 15 ± 2 nm determined from TEM and XRD and an optical bandgap of 1.6 eV. Magnetic measurements indicate a superparamagnetic behavior with saturation magnetizations of 44.22 emu/g and 27.97 emu/g, respectively, for Zn/Ca ferrite and Zn/Ca ferrite with photodeposited silver. The zinc/calcium ferrite nanoparticles with photodeposited silver showed efficient photodegradation of the textile azo dyes C.I. Reactive Blue 250 and C.I. Reactive Yellow 145. Subsequent cycles of the use of the photocatalyst indicate the possibility of magnetic recovery and reutilization without a significant loss of efficiency.

3.
Materials (Basel) ; 12(21)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683585

ABSTRACT

Magnetic nanoparticles of zinc/calcium ferrite and decorated with silver were prepared by coprecipitation method. The obtained nanoparticles were characterized by UV/Visible absorption, XRD, TEM and SQUID. The mixed zinc/calcium ferrites exhibit an optical band gap of 1.78 eV. HR-TEM imaging showed rectangular nanoplate shapes with sizes of 10 ± 3 nm and aspect ratio mainly between 1 and 1.5. Magnetic measurements indicated a superparamagnetic behavior. XRD diffractograms allowed a size estimation of 4 nm, which was associated with the nanoplate thickness. The silver-decorated zinc/calcium ferrite nanoparticles were successfully employed in the photodegradation of a model dye (Rhodamine B) and industrial textile dyes (CI Reactive Red 195, CI Reactive Blue 250 and CI Reactive Yellow 145). The nanosystems developed exhibited promising results for industrial application in effluent photoremediation using visible light, with the possibility of magnetic recovery.

4.
Phys Chem Chem Phys ; 21(20): 10377-10390, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31065651

ABSTRACT

Herein, novel dehydropeptide-based magnetogels, based on the hydrogelators Npx-l-Phe-Z-ΔAbu-OH, Npx-l-Trp-Z-ΔPhe-OH and Npx-l-Ala-Z-ΔPhe-Gly-l-Arg-Gly-l-Asp-Gly-OH and containing manganese ferrite nanoparticles (diameters around 20 nm), were prepared and characterized. TEM and FTIR measurements showed that the magnetogels maintained the fibrous structure of neat hydrogels, with fibres of ca. 20 nm average width (generally in the range 10-30 nm) and a few conformational changes relative to the neat hydrogels. The magnetogels were tested as nanocarriers for two potential fluorescent antitumor drugs: a thienopyridine derivative and the natural compound curcumin. FRET (Förster resonance energy transfer) from the aromatic moieties (energy donors) of gels to the fluorescent drugs (energy acceptors) and fluorescence anisotropy measurements confirmed the incorporation of both drugs into the magnetogel matrices. The transport of both drugs loaded into the magnetogels to membrane models (small unilamellar vesicles) was assessed by FRET between the fluorescent drugs and the dye Nile Red. The magnetogel possessing the RGD sequence was most promising for the delivery of the thienopyridine derivative, whereas three magnetogels were found to be suitable for the delivery of curcumin.


Subject(s)
Drug Carriers/chemistry , Ferric Compounds/chemistry , Manganese Compounds/chemistry , Nanoparticles/chemistry , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Line , Curcumin/administration & dosage , Fluorescence Resonance Energy Transfer , Hydrogels/chemistry , Magnetics
SELECTION OF CITATIONS
SEARCH DETAIL
...