Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 455, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172384

ABSTRACT

The Asian Citrus Psyllid (ACP), Diaphorina citri, is a vector of the pathological bacterium Candidatus Liberibacter asiaticus (CLas), which causes the most devastating disease to the citrus industry worldwide, known as greening or huanglongbing (HLB). Earlier field tests with an acetic acid-based lure in greening-free, 'Valencia' citrus orange groves in California showed promising results. The same type of lures tested in São Paulo, Brazil, showed unsettling results. During the unsuccessful trials, we noticed a relatively large proportion of females in the field, ultimately leading us to test field-collected males and females for Wolbachia and CLas. The results showed high rates of Wolbachia and CLas infection in field populations. We then compared the olfactory responses of laboratory-raised, CLas-free, and CLas-infected males to acetic acid. As previously reported, CLas-uninfected males responded to acetic acid at 1 µg. Surprisingly, CLas-infected males required 50 × higher doses of the putative sex pheromone, thus explaining the failure to capture CLas-infected males in the field. CLas infection was also manifested in electrophysiological responses. Electroantennogram responses from CLas-infected ACP males were significantly higher than those obtained with uninfected males. To the best of our knowledge, this is the first report of a pathogen infection affecting a vector's response to a sex attractant.


Subject(s)
Citrus sinensis , Citrus , Hemiptera , Rhizobiaceae , Sex Attractants , Wolbachia , Female , Male , Animals , Hemiptera/physiology , Sex Attractants/pharmacology , Brazil , Citrus/microbiology , Rhizobiaceae/physiology , Acetates , Plant Diseases/microbiology
2.
Plant Cell Environ ; 47(3): 782-798, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37994626

ABSTRACT

The relationship between plants and pollinators is known to be influenced by ecological interactions with other community members. While most research has focused on aboveground communities affecting plant-pollinator interactions, it is increasingly recognized that soil-dwelling organisms can directly or indirectly impact these interactions. Although studies have examined the effects of arbuscular mycorrhizal fungi on floral traits, there is a gap in research regarding similar effects associated with plant growth-promoting rhizobacteria (PGPR), particularly concerning floral scent. Our study aimed to investigate the influence of the PGPR Bacillus amyloliquefaciens on the floral traits of wild (Solanum habrochaites, Solanum pimpinellifolium and Solanum peruvianum) and cultivated tomato (Solanum lycopersicum), as well as the impact of microbially-driven changes in floral scent on the foraging behaviour of the stingless bee Melipona quadrifasciata. Our findings revealed that inoculating tomatoes with PGPR led to an increased number of flowers and enhanced overall floral volatile emission. Additionally, we observed higher flower biomass and pollen levels in all species, except S. peruvianum. Importantly, these changes in volatile emissions influenced the foraging behaviour of M. quadrifasciata significantly. Our results highlight the impact of beneficial soil microbes on plant-pollinator interactions, shedding light on the multiple effects that plant-microbial interactions can have on aboveground organisms.


Subject(s)
Solanum lycopersicum , Solanum , Animals , Pollination , Flowers , Plants , Pollen , Soil
3.
Ecol Evol ; 13(8): e10416, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37575593

ABSTRACT

Abiotic factors strongly influence ecological interactions and the spatial distribution of organisms. Despite the essential role of barometric pressure, its influence on insect behaviour remains poorly understood, particularly in predators. The effect of barometric pressure variation can significantly impact biological control programs involving entomophagous insects, as they must efficiently allocate time and energy to search for prey in challenging environments. We investigated how predatory insects from different taxonomic groups (Coleoptera, Dermaptera and Neuroptera) adapt their foraging behaviour in response to variations in barometric pressure (low, medium and high). We also examined the response of different life stages to changes in pressure regimes during foraging activities. Our results showed that the searching time of Doru luteipes (Dermaptera: Forficulidae) was faster in a favourable high-pressure regime, whereas Chrysoperla externa (Neuroptera: Chrysopidae) and Eriopis connexa (Coleoptera: Coccinellidae) had similar searching times under varying pressure regimes. Although no differences in prey feeding time were observed among the studied species, the consumption rate was influenced by low barometric pressure leading to a decrease in the number of preyed eggs. Moreover, we provide novel insights into how hemimetabolous (D. luteipes) and holometabolous (E. connexa) species at different life stages respond to barometric pressure. Doru luteipes nymphs and adults had similar consumption rates across all pressure regimes tested, whereas E. connexa larvae consumed fewer eggs under low barometric pressure, but adults were unaffected. This highlights the importance of investigating how abiotic factors affect insects foraging efficiency and predator-prey interactions. Such studies are especially relevant in the current context of climate change, as even subtle changes in abiotic factors can have strong effects on insect behaviour. Barometric pressure is a key meteorological variable that serve as a warning signal for insects to seek shelter and avoid exposure to weather events that could potentially increase their mortality. Understanding the effects of barometric pressure on predatory insects' behaviour can help us develop more effective pest management strategies and promote the resilience of agroecosystems. We provide new insights into the complex relationship between barometric pressure and predator-prey interactions.

4.
Biomolecules ; 13(6)2023 06 15.
Article in English | MEDLINE | ID: mdl-37371577

ABSTRACT

Agricultural crop productivity relies on the application of chemical pesticides to reduce pest and pathogen damage. However, chemical pesticides also pose a range of ecological, environmental and economic penalties. This includes the development of pesticide resistance by insect pests and pathogens, rendering pesticides less effective. Alternative sustainable crop protection tools should therefore be considered. Semiochemicals are signalling molecules produced by organisms, including plants, microbes, and animals, which cause behavioural or developmental changes in receiving organisms. Manipulating semiochemicals could provide a more sustainable approach to the management of insect pests and pathogens across crops. Here, we review the role of semiochemicals in the interaction between plants, insects and microbes, including examples of how they have been applied to agricultural systems. We highlight future research priorities to be considered for semiochemicals to be credible alternatives to the application of chemical pesticides.


Subject(s)
Insecta , Pesticides , Animals , Crops, Agricultural , Crop Production , Pheromones/pharmacology
5.
Planta ; 257(4): 76, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36894799

ABSTRACT

MAIN CONCLUSION: Cultivated tomato presented lower constitutive volatiles, reduced morphological and chemical defenses, and increased leaf nutritional quality that affect its resistance against the specialist herbivore Tuta absoluta compared to its wild relatives. Plant domestication process has selected desirable agronomic attributes that can both intentionally and unintentionally compromise other important traits, such as plant defense and nutritional value. However, the effect of domestication on defensive and nutritional traits of plant organs not exposed to selection and the consequent interactions with specialist herbivores are only partly known. Here, we hypothesized that the modern cultivated tomato has reduced levels of constitutive defense and increased levels of nutritional value compared with its wild relatives, and such differences affect the preference and performance of the South American tomato pinworm, Tuta absoluta-an insect pest that co-evolved with tomato. To test this hypothesis, we compared plant volatile emissions, leaf defensive (glandular and non-glandular trichome density, and total phenolic content), and nutritional traits (nitrogen content) among the cultivated tomato Solanum lycopersicum and its wild relatives S. pennellii and S. habrochaites. We also determined the attraction and ovipositional preference of female moths and larval performance on cultivated and wild tomatoes. Volatile emissions were qualitatively and quantitatively different among the cultivated and wild species. Glandular trichomes density and total phenolics were lower in S. lycopersicum. In contrast, this species had a greater non-glandular trichome density and leaf nitrogen content. Female moths were more attracted and consistently laid more eggs on the cultivated S. lycopersicum. Larvae fed on S. lycopersicum leaves had a better performance reaching shorter larval developmental times and increasing the pupal weight compared to those fed on wild tomatoes. Overall, our study documents that agronomic selection for increased yields has altered the defensive and nutritional traits in tomato plants, affecting their resistance to T. absoluta.


Subject(s)
Moths , Solanum lycopersicum , Solanum , Animals , Herbivory , Larva , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...