Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 12(3): 2661-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22755105

ABSTRACT

In this work, it is demonstrated how a novel technique based on temperature-programmed chemical vapor deposition (TPCVD) can be used to investigate the synthesis of carbon nanotubes (CNTs) from methane on a classic catalyst FeMo(x)/MgO (x = 0.07, 0.35 and 1.00). TPCVD monitors carbon deposition by measuring H2 formed during CH4 decomposition and affords information on the different catalytic species, deactivation process, reaction kinetics and carbon yields. The obtained results showed for FeMgO catalyst a simple TPCVD peak related to the production of carbon beginning at 760 degrees C with maximum at 800 degrees C followed by a rapid deactivation resulting in a low carbon yield. The addition of Mo to Fe/MgO catalyst completely changes the TPCVD profile with the formation of a new catalytic species active at temperatures higher than 900 degrees C, which is stable and continuously decomposes CH4 to produce high carbon yields. Raman, TG/DTG, Mössbauer, SEM, TEM, XRD and TPR analyses suggested that this active catalytic phase is likely related to Fe-Mo and Fe-Mo-C phases active to produce single wall and mainly multiwall carbon nanotubes.

SELECTION OF CITATIONS
SEARCH DETAIL
...