Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 132024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639482

ABSTRACT

Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.


Subject(s)
MicroRNAs , Semen , Male , Animals , Mice , Semen/metabolism , Spermatogenesis/genetics , Spermatozoa/metabolism , Testis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mammals/genetics
2.
bioRxiv ; 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-37398484

ABSTRACT

Despite rapid evolution across eutherian mammals, the X-linked miR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (Slitrk2 and Fmr1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked miR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernable defects, but simultaneous ablation of five clusters containing nineteen members of the miR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked miR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the miR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.

3.
Genomics ; 113(6): 4109-4115, 2021 11.
Article in English | MEDLINE | ID: mdl-34718131

ABSTRACT

Genetic variants of SARS-CoV-2 have been emerging and circulating in many places across the world. Rapid detection of these variants is essential since their dissemination can impact transmission rates, diagnostic procedures, disease severity, response to vaccines or patient management. Sanger sequencing has been used as the preferred approach for variant detection among circulating human immunodeficiency and measles virus genotypes. Using primers to amplify a fragment of the SARS-CoV-2 genome encoding part of the Spike protein, we showed that Sanger sequencing allowed us to rapidly detect the introduction and spread of three distinct SARS-CoV-2 variants in two major Brazilian cities. In both cities, after the predominance of variants closely related to the virus first identified in China, the emergence of the P.2 variant was quickly followed by the detection of the P1 variant, which became dominant in less than one month after it was first detected.


Subject(s)
COVID-19/virology , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , SARS-CoV-2/genetics , Brazil/epidemiology , COVID-19/epidemiology , China , Cities , Humans , Mutation , Phylogeny , Spike Glycoprotein, Coronavirus/genetics
4.
PLoS Negl Trop Dis ; 14(5): e0008262, 2020 05.
Article in English | MEDLINE | ID: mdl-32469928

ABSTRACT

Adhesion of T. cruzi trypomastigotes to components of the extracellular matrix (ECM) is an important step in mammalian host cell invasion. We have recently described a significant increase in the tyrosine nitration levels of histones H2A and H4 when trypomastigotes are incubated with components of the ECM. In this work, we used chromatin immunoprecipitation (ChIP) with an anti-nitrotyrosine antibody followed by mass spectrometry to identify nitrated DNA binding proteins in T. cruzi and to detect alterations in nitration levels induced upon parasite incubation with the ECM. Histone H1, H2B, H2A and H3 were detected among the 9 most abundant nitrated DNA binding proteins using this proteomic approach. One nitrated tyrosine residue (Y29) was identified in Histone H2B in the MS/MS spectrum. In addition, we observed a significant increase in the nitration levels of histones H1, H2B, H2A and H4 upon parasite incubation with ECM. Finally, we used ChIP-Seq to map global changes in the DNA binding profile of nitrated proteins. We observed a significant change in the binding pattern of nitrated proteins to DNA after parasite incubation with ECM. This work provides the first global profile of nitrated DNA binding proteins in T. cruzi and additional evidence for modification in the nitration profile of histones upon parasite incubation with ECM. Our data also indicate that the parasite interaction with the ECM induces alterations in chromatin structure, possibly affecting nuclear functions.


Subject(s)
Extracellular Matrix/parasitology , Histones/analysis , Protein Processing, Post-Translational , Protozoan Proteins/analysis , Trypanosoma cruzi/chemistry , Trypanosoma cruzi/growth & development , Chromatin Immunoprecipitation , Extracellular Matrix/metabolism , Histones/metabolism , Mass Spectrometry , Nitrosation , Proteomics , Protozoan Proteins/metabolism , Tyrosine/analogs & derivatives , Tyrosine/immunology
5.
Acta Trop ; 137: 25-30, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24801885

ABSTRACT

Visceral leishmaniasis (VL) is a neglected disease and is fatal if untreated. Dogs serve as reservoirs for Leishmania infantum (syn. L. chagasi) due to their susceptibility to infection and high skin parasitism. Therefore, VL control in Brazil involves the elimination of seropositive dogs, among other actions. However, the most frequently used serological tests have limitations regarding sensitivity and specificity. In this study, we have selected three Leishmania antigens (C1, C8 and C9) and have produced them as recombinant proteins using pET-28a-TEV vector and Escherichia coli BL-21 as expression system. When tested in ELISA with human samples, the C9 antigen was the one showing the most promising results, with 68% sensitivity and 78% specificity. When testing canine samples, the C1, C8 and C9 antigens showed a sensitivity range from 70% to 80% and specificity range from 60% to 90%. The C1 antigen presented higher sensitivity (80%) and the C8 antigen presented higher specificity (90%). Due to it, we decided to mix and test C1 and C8 antigens together, resulting in the C18 antigen. The mix also yielded high percentages of detected symptomatic and asymptomatic dogs however it did not improve the performance of the diagnostic. Comparison of our tests with the tests recommended by the Brazilian Ministry of Health revealed that our antigens' sensitivities and the percentage of detected asymptomatic dogs were much higher. Our results suggest that the C1, C8, C18 and C9 recombinant proteins are good antigens to diagnose canine visceral leishmaniasis and could potentially be used in screening tests. To diagnose human visceral leishmaniasis, the C9 antigen presented reasonable results, but more optimization must be performed for this antigen to provide better performance.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan , Carrier State/veterinary , Dog Diseases/diagnosis , Leishmania infantum/immunology , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/veterinary , Animals , Antigens, Protozoan/genetics , Brazil , Carrier State/diagnosis , Dogs , Enzyme-Linked Immunosorbent Assay/methods , Escherichia coli/genetics , Gene Expression , Humans , Leishmania infantum/genetics , Recombinant Proteins/genetics , Sensitivity and Specificity , Serologic Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...