Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Restor Dent Endod ; 47(4): e38, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36518610

ABSTRACT

Objectives: This study investigated the cytotoxicity, radiopacity, pH, and dentinal tubule penetration of a paste of 1.0% calcium-doped zinc oxide nanocrystals (ZnO:1.0Ca) combined with propylene glycol (PRG) or polyethylene glycol and propylene glycol (PEG-PRG). Materials and Methods: The pastes were prepared by mixing calcium hydroxide [Ca(OH)2] or ZnO:1.0Ca with PRG or a PEG-PRG mixture. The pH was evaluated after 24 and 96 hours of storage in deionized water. Digital radiographs were acquired for radiopacity analysis and bubble counting of each material. The materials were labeled with 0.1% fluorescein and applied to root canals, and images of their dentinal tubule penetration were obtained using confocal laser scanning microscopy. RAW264.7 macrophages were placed in different dilutions of culture media previously exposed to the materials for 24 and 96 hours and tested for cell viability using the MTT assay. Analysis of variance and the Tukey test (α = 0.05) were performed. Results: ZnO:1.0Ca materials showed lower viability at 1:1 and 1:2 dilutions than Ca(OH)2 materials (p < 0.0001). Ca(OH)2 had higher pH values than ZnO:1.0Ca at 24 and 96 hours, regardless of the vehicle (p < 0.05). ZnO:1.0Ca pastes showed higher radiopacity than Ca(OH)2 pastes (p < 0.01). No between-material differences were found in bubble counting (p = 0.0902). The ZnO:1.0Ca pastes had a greater penetration depth than Ca(OH)2 in the apical third (p < 0.0001). Conclusions: ZnO:1.0Ca medicaments presented higher penetrability, cell viability, and radiopacity than Ca(OH)2. Higher values of cell viability and pH were present in Ca(OH)2 than in ZnO:1.0Ca.

2.
Int Endod J ; 54(11): 2133-2144, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34418112

ABSTRACT

AIM: To analyse the discolouration, radiopacity, pH and calcium ion release of Biodentine (BD), Bio-C repair (BCR) and Bio-C temp (BCT), as well as their biological effects on human dental pulp cells (hDPCs). METHODOLOGY: Sixty-four extracted bovine incisors were prepared to simulate crown fractures with pulp exposure and open root apex. The roots were filled using a mixture of agar and blood (control), and BD, BCR or BCT were placed over this mixture. Colour assessment analyses of the samples were performed before and immediately after material insertion and repeated at 30 and 90 days, using a spectrophotometer. The colour change of each specimen was evaluated at the crown and calculated based on the CIELab colour space. Digital radiographs were acquired for radiopacity analysis. hDPCs were placed in contact with different dilutions of culture media previously exposed to such materials and tested for cell viability using the MTT assay. The pH and calcium ion release of all materials were measured after 24 h; the data were assessed using one-way analysis of variance (ANOVA). Cell viability was analysed by two-way ANOVA. Differences in colour parameters and wound-healing data were assessed by two-way repeated measures ANOVA (α = 0.05). Tukey's and Dunnett's tests were used to compare the experimental groups with the control group. RESULTS: BCR had grater radiopacity and smaller colour alteration (ΔEab/ΔE00) than the other materials tested (p < .005; p < .001). No significant differences in pH were found amongst the tested materials (p > .05). BCT was associated with the largest release of calcium ions (p < .0001). BD had cell viability similar to that of the control at the lowest dilutions, and BCR was similar to that of the control, regardless of the dilution tested (p > .05). BCT had a lower percentage of viability than that of the control at all tested dilutions (p < .0001). Cell migration rates in BD and BCR were similar to those in the control group after 24 h and 48 h (p > .05), whilst BCT had larger voids than the control in both periods (p < .0001). CONCLUSIONS: BCR, BCT and BD were associated with tooth discolouration. BCR had the lowest staining values, the highest radiopacity and viability greater than 80% hDPCs.


Subject(s)
Root Canal Filling Materials , Tooth Discoloration , Animals , Calcium Compounds , Cattle , Cell Survival , Humans , Pulpotomy , Silicates
SELECTION OF CITATIONS
SEARCH DETAIL
...