Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Hortic Res ; 10(11): uhad202, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38023484

ABSTRACT

Domestication of cranberry and blueberry began in the United States in the early 1800s and 1900s, respectively, and in part owing to their flavors and health-promoting benefits are now cultivated and consumed worldwide. The industry continues to face a wide variety of production challenges (e.g. disease pressures), as well as a demand for higher-yielding cultivars with improved fruit quality characteristics. Unfortunately, molecular tools to help guide breeding efforts for these species have been relatively limited compared with those for other high-value crops. Here, we describe the construction and analysis of the first pangenome for both blueberry and cranberry. Our analysis of these pangenomes revealed both crops exhibit great genetic diversity, including the presence-absence variation of 48.4% genes in highbush blueberry and 47.0% genes in cranberry. Auxiliary genes, those not shared by all cultivars, are significantly enriched with molecular functions associated with disease resistance and the biosynthesis of specialized metabolites, including compounds previously associated with improving fruit quality traits. The discovery of thousands of genes, not present in the previous reference genomes for blueberry and cranberry, will serve as the basis of future research and as potential targets for future breeding efforts. The pangenome, as a multiple-sequence alignment, as well as individual annotated genomes, are publicly available for analysis on the Genome Database for Vaccinium-a curated and integrated web-based relational database. Lastly, the core-gene predictions from the pangenomes will serve useful to develop a community genotyping platform to guide future molecular breeding efforts across the family.

2.
bioRxiv ; 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37577683

ABSTRACT

Domestication of cranberry and blueberry began in the United States in the early 1800s and 1900s, respectively, and in part owing to their flavors and health-promoting benefits are now cultivated and consumed worldwide. The industry continues to face a wide variety of production challenges (e.g. disease pressures) as well as a demand for higher-yielding cultivars with improved fruit quality characteristics. Unfortunately, molecular tools to help guide breeding efforts for these species have been relatively limited compared with those for other high-value crops. Here, we describe the construction and analysis of the first pangenome for both blueberry and cranberry. Our analysis of these pangenomes revealed both crops exhibit great genetic diversity, including the presence-absence variation of 48.4% genes in highbush blueberry and 47.0% genes in cranberry. Auxiliary genes, those not shared by all cultivars, are significantly enriched with molecular functions associated with disease resistance and the biosynthesis of specialized metabolites, including compounds previously associated with improving fruit quality traits. The discovery of thousands of genes, not present in the previous reference genomes for blueberry and cranberry, will serve as the basis of future research and as potential targets for future breeding efforts. The pangenome, as a multiple-sequence alignment, as well as individual annotated genomes, are publicly available for analysis on the Genome Database for Vaccinium - a curated and integrated web-based relational database. Lastly, the core-gene predictions from the pangenomes will serve useful to develop a community genotyping platform to guide future molecular breeding efforts across the family.

3.
Plant Genome ; : e20286, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36575809

ABSTRACT

Tocochromanols (vitamin E) are an essential part of the human diet. Plant products, including maize (Zea mays L.) grain, are the major dietary source of tocochromanols; therefore, breeding maize with higher vitamin content (biofortification) could improve human nutrition. Incorporating exotic germplasm in maize breeding for trait improvement including biofortification is a promising approach and an important research topic. However, information about genomic prediction of exotic-derived lines using available training data from adapted germplasm is limited. In this study, genomic prediction was systematically investigated for nine tocochromanol traits within both an adapted (Ames Diversity Panel [AP]) and an exotic-derived (Backcrossed Germplasm Enhancement of Maize [BGEM]) maize population. Although prediction accuracies up to 0.79 were achieved using genomic best linear unbiased prediction (gBLUP) when predicting within each population, genomic prediction of BGEM based on an AP training set resulted in low prediction accuracies. Optimal training population (OTP) design methods fast and unique representative subset selection (FURS), maximization of connectedness and diversity (MaxCD), and partitioning around medoids (PAM) were adapted for inbreds and, along with the methods mean coefficient of determination (CDmean) and mean prediction error variance (PEVmean), often improved prediction accuracies compared with random training sets of the same size. When applied to the combined population, OTP designs enabled successful prediction of the rest of the exotic-derived population. Our findings highlight the importance of leveraging genotype data in training set design to efficiently incorporate new exotic germplasm into a plant breeding program.

4.
Plant Genome ; : e20276, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36321716

ABSTRACT

With an essential role in human health, tocochromanols are mostly obtained by consuming seed oils; however, the vitamin E content of the most abundant tocochromanols in maize (Zea mays L.) grain is low. Several large-effect genes with cis-acting variants affecting messenger RNA (mRNA) expression are mostly responsible for tocochromanol variation in maize grain, with other relevant associated quantitative trait loci (QTL) yet to be fully resolved. Leveraging existing genomic and transcriptomic information for maize inbreds could improve prediction when selecting for higher vitamin E content. Here, we first evaluated a multikernel genomic best linear unbiased prediction (MK-GBLUP) approach for modeling known QTL in the prediction of nine tocochromanol grain phenotypes (12-21 QTL per trait) within and between two panels of 1,462 and 242 maize inbred lines. On average, MK-GBLUP models improved predictive abilities by 7.0-13.6% when compared with GBLUP. In a second approach with a subset of 545 lines from the larger panel, the highest average improvement in predictive ability relative to GBLUP was achieved with a multi-trait GBLUP model (15.4%) that had a tocochromanol phenotype and transcript abundances in developing grain for a few large-effect candidate causal genes (1-3 genes per trait) as multiple response variables. Taken together, our study illustrates the enhancement of prediction models when informed by existing biological knowledge pertaining to QTL and candidate causal genes.

5.
Genetics ; 221(4)2022 07 30.
Article in English | MEDLINE | ID: mdl-35666198

ABSTRACT

Tocochromanols (tocopherols and tocotrienols, collectively vitamin E) are lipid-soluble antioxidants important for both plant fitness and human health. The main dietary sources of vitamin E are seed oils that often accumulate high levels of tocopherol isoforms with lower vitamin E activity. The tocochromanol biosynthetic pathway is conserved across plant species but an integrated view of the genes and mechanisms underlying natural variation of tocochromanol levels in seed of most cereal crops remains limited. To address this issue, we utilized the high mapping resolution of the maize Ames panel of ∼1,500 inbred lines scored with 12.2 million single-nucleotide polymorphisms to generate metabolomic (mature grain tocochromanols) and transcriptomic (developing grain) data sets for genetic mapping. By combining results from genome- and transcriptome-wide association studies, we identified a total of 13 candidate causal gene loci, including 5 that had not been previously associated with maize grain tocochromanols: 4 biosynthetic genes (arodeH2 paralog, dxs1, vte5, and vte7) and a plastid S-adenosyl methionine transporter (samt1). Expression quantitative trait locus (eQTL) mapping of these 13 gene loci revealed that they are predominantly regulated by cis-eQTL. Through a joint statistical analysis, we implicated cis-acting variants as responsible for colocalized eQTL and GWAS association signals. Our multiomics approach provided increased statistical power and mapping resolution to enable a detailed characterization of the genetic and regulatory architecture underlying tocochromanol accumulation in maize grain and provided insights for ongoing biofortification efforts to breed and/or engineer vitamin E and antioxidant levels in maize and other cereals.


Subject(s)
Edible Grain , Zea mays , Antioxidants/metabolism , Edible Grain/genetics , Genome-Wide Association Study , Humans , Plant Breeding , Polymorphism, Single Nucleotide , Tocopherols/metabolism , Vitamin E/metabolism , Zea mays/genetics , Zea mays/metabolism
6.
Proc Natl Acad Sci U S A ; 119(23): e2113488119, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35639691

ABSTRACT

The tocopherol biosynthetic pathway, encoded by VTE genes 1 through 6, is highly conserved in plants but most large effect quantitative trait loci for seed total tocopherols (totalT) lack VTE genes, indicating other activities are involved. A genome-wide association study of Arabidopsis seed tocopherols showed five of seven significant intervals lacked VTE genes, including the most significant, which mapped to an uncharacterized, seed-specific, envelope-localized, alpha/beta hydrolase with esterase activity, designated AtVTE7. Atvte7 null mutants decreased seed totalT 55% while a leaky allele of the maize ortholog, ZmVTE7, decreased kernel and leaf totalT 38% and 49%, respectively. Overexpressing AtVTE7 or ZmVTE7 partially or fully complemented the Atvte7 seed phenotype and increased leaf totalT by 3.6- and 6.9-fold, respectively. VTE7 has the characteristics of an esterase postulated to provide phytol from chlorophyll degradation for tocopherol synthesis, but bulk chlorophyll levels were unaffected in vte7 mutants and overexpressing lines. Instead, levels of specific chlorophyll biosynthetic intermediates containing partially reduced side chains were impacted and strongly correlated with totalT. These intermediates are generated by a membrane-associated biosynthetic complex containing protochlorophyllide reductase, chlorophyll synthase, geranylgeranyl reductase (GGR) and light harvesting-like 3 protein, all of which are required for both chlorophyll and tocopherol biosynthesis. We propose a model where VTE7 releases prenyl alcohols from chlorophyll biosynthetic intermediates, which are then converted to the corresponding diphosphates for tocopherol biosynthesis.


Subject(s)
Arabidopsis , Hydrolases , Arabidopsis/genetics , Arabidopsis/metabolism , Chloroplasts/physiology , Genome-Wide Association Study , Hydrolases/metabolism , Phytol/metabolism , Plant Breeding , Plants/genetics , Plants/metabolism , Tocopherols/metabolism , Vitamin E/metabolism
7.
Plant Cell ; 33(4): 882-900, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33681994

ABSTRACT

Vitamin A deficiency remains prevalent in parts of Asia, Latin America, and sub-Saharan Africa where maize (Zea mays) is a food staple. Extensive natural variation exists for carotenoids in maize grain. Here, to understand its genetic basis, we conducted a joint linkage and genome-wide association study of the US maize nested association mapping panel. Eleven of the 44 detected quantitative trait loci (QTL) were resolved to individual genes. Six of these were correlated expression and effect QTL (ceeQTL), showing strong correlations between RNA-seq expression abundances and QTL allelic effect estimates across six stages of grain development. These six ceeQTL also had the largest percentage of phenotypic variance explained, and in major part comprised the three to five loci capturing the bulk of genetic variation for each trait. Most of these ceeQTL had strongly correlated QTL allelic effect estimates across multiple traits. These findings provide an in-depth genome-level understanding of the genetic and molecular control of carotenoids in plants. In addition, these findings provide a roadmap to accelerate breeding for provitamin A and other priority carotenoid traits in maize grain that should be readily extendable to other cereals.


Subject(s)
Carotenoids/metabolism , Seeds/genetics , Zea mays/genetics , Zea mays/metabolism , Epistasis, Genetic , Genetic Variation , Genome-Wide Association Study , Phenotype , Plant Proteins/genetics , Quantitative Trait Loci , Seeds/metabolism
8.
Plant Genome ; 13(1): e20008, 2020 03.
Article in English | MEDLINE | ID: mdl-33016632

ABSTRACT

Sweet corn (Zea mays L.) is highly consumed in the United States, but does not make major contributions to the daily intake of carotenoids (provitamin A carotenoids, lutein and zeaxanthin) that would help in the prevention of health complications. A genome-wide association study of seven kernel carotenoids and twelve derivative traits was conducted in a sweet corn inbred line association panel ranging from light to dark yellow in endosperm color to elucidate the genetic basis of carotenoid levels in fresh kernels. In agreement with earlier studies of maize kernels at maturity, we detected an association of ß-carotene hydroxylase (crtRB1) with ß-carotene concentration and lycopene epsilon cyclase (lcyE) with the ratio of flux between the α- and ß-carotene branches in the carotenoid biosynthetic pathway. Additionally, we found that 5% or less of the evaluated inbred lines possessing the shrunken2 (sh2) endosperm mutation had the most favorable lycE allele or crtRB1 haplotype for elevating ß-branch carotenoids (ß-carotene and zeaxanthin) or ß-carotene, respectively. Genomic prediction models with genome-wide markers obtained moderately high predictive abilities for the carotenoid traits, especially lutein, and outperformed models with less markers that targeted candidate genes implicated in the synthesis, retention, and/or genetic control of kernel carotenoids. Taken together, our results constitute an important step toward increasing carotenoids in fresh sweet corn kernels.


Subject(s)
Carotenoids , Zea mays , Genome-Wide Association Study , Phenotype , Zea mays/genetics , beta Carotene
9.
Plant Genome ; 12(1)2019 03.
Article in English | MEDLINE | ID: mdl-30951088

ABSTRACT

Sweet corn ( L.), a highly consumed fresh vegetable in the United States, varies for tocochromanol (tocopherol and tocotrienol) levels but makes only a limited contribution to daily intake of vitamin E and antioxidants. We performed a genome-wide association study of six tocochromanol compounds and 14 derivative traits across a sweet corn inbred line association panel to identify genes associated with natural variation for tocochromanols and vitamin E in fresh kernels. Concordant with prior studies in mature maize kernels, an association was detected between γ-tocopherol methyltransferase (vte4) and α-tocopherol content, along with () and () for tocotrienol variation. Additionally, two kernel starch synthesis genes, () and (), were associated with tocotrienols, with the strongest evidence for in combination with fixed, strong and alleles, accounting for the greater amount of tocotrienols in and lines. In prediction models with genome-wide markers, predictive abilities were higher for tocotrienols than tocopherols, and these models were superior to those that used marker sets targeting a priori genes involved in the biosynthesis and/or genetic control of tocochromanols. Through this quantitative genetic analysis, we have established a key step for increasing tocochromanols in fresh kernels of sweet corn for human health and nutrition.


Subject(s)
Tocopherols/metabolism , Tocotrienols/metabolism , Zea mays/genetics , Genes, Plant , Genetic Markers , Genetic Variation , Genome-Wide Association Study , Genomics , Phenotype , Plant Breeding , Zea mays/metabolism
10.
Plant J ; 93(5): 799-813, 2018 03.
Article in English | MEDLINE | ID: mdl-29315977

ABSTRACT

Maize white seedling 3 (w3) has been used to study carotenoid deficiency for almost 100 years, although the molecular basis of the mutation has remained unknown. Here we show that the w3 phenotype is caused by disruption of the maize gene for homogentisate solanesyl transferase (HST), which catalyzes the first and committed step in plastoquinone-9 (PQ-9) biosynthesis in the plastid. The resulting PQ-9 deficiency prohibits photosynthetic electron transfer and eliminates PQ-9 as an oxidant in the enzymatic desaturation of phytoene during carotenoid synthesis. As a result, light-grown w3 seedlings are albino, deficient in colored carotenoids and accumulate high levels of phytoene. However, despite the absence of PQ-9 for phytoene desaturation, dark-grown w3 seedlings can produce abscisic acid (ABA) and homozygous w3 kernels accumulate sufficient carotenoids to generate ABA needed for seed maturation. The presence of ABA and low levels of carotenoids in w3 nulls indicates that phytoene desaturase is able to use an alternate oxidant cofactor, albeit less efficiently than PQ-9. The observation that tocopherols and tocotrienols are modestly affected in w3 embryos and unaffected in w3 endosperm indicates that, unlike leaves, grain tissues deficient in PQ-9 are not subject to severe photo-oxidative stress. In addition to identifying the molecular basis for the maize w3 mutant, we: (1) show that low levels of phytoene desaturation can occur in w3 seedlings in the absence of PQ-9; and (2) demonstrate that PQ-9 and carotenoids are not required for vitamin E accumulation.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Plant Proteins/metabolism , Plastoquinone/metabolism , Tocopherols/metabolism , Zea mays/metabolism , Abscisic Acid/metabolism , Alkyl and Aryl Transferases/genetics , Carotenoids/genetics , Carotenoids/metabolism , Mutation , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phenotype , Photosynthesis , Phylogeny , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plastids/genetics , Plastids/metabolism , Seeds/genetics , Seeds/metabolism , Vitamin E/genetics , Vitamin E/metabolism , Zea mays/genetics
11.
Plant Cell ; 29(10): 2374-2392, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28970338

ABSTRACT

Tocopherols, tocotrienols, and plastochromanols (collectively termed tocochromanols) are lipid-soluble antioxidants synthesized by all plants. Their dietary intake, primarily from seed oils, provides vitamin E and other health benefits. Tocochromanol biosynthesis has been dissected in the dicot Arabidopsis thaliana, which has green, photosynthetic seeds, but our understanding of tocochromanol accumulation in major crops, whose seeds are nonphotosynthetic, remains limited. To understand the genetic control of tocochromanols in grain, we conducted a joint linkage and genome-wide association study in the 5000-line U.S. maize (Zea mays) nested association mapping panel. Fifty-two quantitative trait loci for individual and total tocochromanols were identified, and of the 14 resolved to individual genes, six encode novel activities affecting tocochromanols in plants. These include two chlorophyll biosynthetic enzymes that explain the majority of tocopherol variation, which was not predicted given that, like most major cereal crops, maize grain is nonphotosynthetic. This comprehensive assessment of natural variation in vitamin E levels in maize establishes the foundation for improving tocochromanol and vitamin E content in seeds of maize and other major cereal crops.


Subject(s)
Vitamin E/metabolism , Zea mays/metabolism , Chlorophyll/metabolism , Genome-Wide Association Study , Quantitative Trait Loci/genetics , Tocopherols/metabolism , Tocotrienols/metabolism
12.
Plant Cell ; 28(8): 1926-44, 2016 08.
Article in English | MEDLINE | ID: mdl-27432874

ABSTRACT

Camptothecin is a monoterpene indole alkaloid (MIA) used to produce semisynthetic antitumor drugs. We investigated camptothecin synthesis in Camptotheca acuminata by combining transcriptome and expression data with reverse genetics, biochemistry, and metabolite profiling. RNAi silencing of enzymes required for the indole and seco-iridoid (monoterpene) components identified transcriptional crosstalk coordinating their synthesis in roots. Metabolite profiling and labeling studies of wild-type and RNAi lines identified plausible intermediates for missing pathway steps and demonstrated nearly all camptothecin pathway intermediates are present as multiple isomers. Unlike previously characterized MIA-producing plants, C. acuminata does not synthesize 3-α(S)-strictosidine as its central MIA intermediate and instead uses an alternative seco-iridoid pathway that produces multiple isomers of strictosidinic acid. NMR analysis demonstrated that the two major strictosidinic acid isomers are (R) and (S) diastereomers at their glucosylated C21 positions. The presence of multiple diastereomers throughout the pathway is consistent with their use in synthesis before finally being resolved to a single camptothecin isomer after deglucosylation, much as a multilane highway allows parallel tracks to converge at a common destination. A model "diastereomer" pathway for camptothecin biosynthesis in C. acuminata is proposed that fundamentally differs from previously studied MIA pathways.


Subject(s)
Alkaloids/biosynthesis , Camptotheca/metabolism , Camptothecin/metabolism , Plant Proteins/metabolism , Carbolines/metabolism , Glycosides/metabolism , Magnetic Resonance Spectroscopy
13.
Plant Physiol ; 171(3): 1837-51, 2016 07.
Article in English | MEDLINE | ID: mdl-27208224

ABSTRACT

Elucidation of the carotenoid biosynthetic pathway has enabled altering the composition and content of carotenoids in various plants, but to achieve desired nutritional impacts, the genetic components regulating carotenoid homeostasis in seed, the plant organ consumed in greatest abundance, must be elucidated. We used a combination of linkage mapping, genome-wide association studies (GWAS), and pathway-level analysis to identify nine loci that impact the natural variation of seed carotenoids in Arabidopsis (Arabidopsis thaliana). ZEAXANTHIN EPOXIDASE (ZEP) was the major contributor to carotenoid composition, with mutants lacking ZEP activity showing a remarkable 6-fold increase in total seed carotenoids relative to the wild type. Natural variation in ZEP gene expression during seed development was identified as the underlying mechanism for fine-tuning carotenoid composition, stability, and ultimately content in Arabidopsis seed. We previously showed that two CAROTENOID CLEAVAGE DIOXYGENASE enzymes, CCD1 and CCD4, are the primary mediators of seed carotenoid degradation, and here we demonstrate that ZEP acts as an upstream control point of carotenoid homeostasis, with ZEP-mediated epoxidation targeting carotenoids for degradation by CCD enzymes. Finally, four of the nine loci/enzymatic activities identified as underlying natural variation in Arabidopsis seed carotenoids also were identified in a recent GWAS of maize (Zea mays) kernel carotenoid variation. This first comparison of the natural variation in seed carotenoids in monocots and dicots suggests a surprising overlap in the genetic architecture of these traits between the two lineages and provides a list of likely candidates to target for selecting seed carotenoid variation in other species.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Carotenoids/metabolism , Oxidoreductases/metabolism , Seeds/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Carotenoids/genetics , Dioxygenases/genetics , Dioxygenases/metabolism , Gene Expression Regulation, Plant , Genome-Wide Association Study , Haplotypes , Mutation , Oxidoreductases/genetics , Quantitative Trait Loci , Seeds/genetics , Seeds/growth & development , Xanthophylls/genetics , Xanthophylls/metabolism
14.
Genetics ; 198(4): 1699-716, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25258377

ABSTRACT

Efforts are underway for development of crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency. As a global staple crop with considerable variation in kernel carotenoid composition, maize (Zea mays L.) could have a widespread impact. We performed a genome-wide association study (GWAS) of quantified seed carotenoids across a panel of maize inbreds ranging from light yellow to dark orange in grain color to identify some of the key genes controlling maize grain carotenoid composition. Significant associations at the genome-wide level were detected within the coding regions of zep1 and lut1, carotenoid biosynthetic genes not previously shown to impact grain carotenoid composition in association studies, as well as within previously associated lcyE and crtRB1 genes. We leveraged existing biochemical and genomic information to identify 58 a priori candidate genes relevant to the biosynthesis and retention of carotenoids in maize to test in a pathway-level analysis. This revealed dxs2 and lut5, genes not previously associated with kernel carotenoids. In genomic prediction models, use of markers that targeted a small set of quantitative trait loci associated with carotenoid levels in prior linkage studies were as effective as genome-wide markers for predicting carotenoid traits. Based on GWAS, pathway-level analysis, and genomic prediction studies, we outline a flexible strategy involving use of a small number of genes that can be selected for rapid conversion of elite white grain germplasm, with minimal amounts of carotenoids, to orange grain versions containing high levels of provitamin A.


Subject(s)
Carotenoids/metabolism , Genome-Wide Association Study , Models, Biological , Zea mays/genetics , Zea mays/metabolism , Biosynthetic Pathways , Genomics , Linkage Disequilibrium , Phenotype , Quantitative Trait Loci , Quantitative Trait, Heritable , Reproducibility of Results
15.
Plant Cell ; 25(12): 4812-26, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24368792

ABSTRACT

Experimental approaches targeting carotenoid biosynthetic enzymes have successfully increased the seed ß-carotene content of crops. However, linkage analysis of seed carotenoids in Arabidopsis thaliana recombinant inbred populations showed that only 21% of quantitative trait loci, including those for ß-carotene, encode carotenoid biosynthetic enzymes in their intervals. Thus, numerous loci remain uncharacterized and underutilized in biofortification approaches. Linkage mapping and genome-wide association studies of Arabidopsis seed carotenoids identified CAROTENOID cleavage dioxygenase4 (CCD4) as a major negative regulator of seed carotenoid content, especially ß-carotene. Loss of CCD4 function did not affect carotenoid homeostasis during seed development but greatly reduced carotenoid degradation during seed desiccation, increasing ß-carotene content 8.4-fold relative to the wild type. Allelic complementation of a ccd4 null mutant demonstrated that single-nucleotide polymorphisms and insertions and deletions at the locus affect dry seed carotenoid content, due at least partly to differences in CCD4 expression. CCD4 also plays a major role in carotenoid turnover during dark-induced leaf senescence, with ß-carotene accumulation again most strongly affected in the ccd4 mutant. These results demonstrate that CCD4 plays a major role in ß-carotene degradation in drying seeds and senescing leaves and suggest that CCD4 orthologs would be promising targets for stabilizing and increasing the level of provitamin A carotenoids in seeds of major food crops.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/enzymology , Dioxygenases/physiology , Plant Proteins/physiology , beta Carotene/biosynthesis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cellular Senescence , Chromosome Mapping , Dioxygenases/genetics , Dioxygenases/metabolism , Homeostasis , Mutagenesis, Insertional , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Seeds/genetics , Seeds/metabolism , Sequence Deletion
16.
G3 (Bethesda) ; 3(8): 1287-99, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23733887

ABSTRACT

Tocopherols and tocotrienols, collectively known as tocochromanols, are the major lipid-soluble antioxidants in maize (Zea mays L.) grain. Given that individual tocochromanols differ in their degree of vitamin E activity, variation for tocochromanol composition and content in grain from among diverse maize inbred lines has important nutritional and health implications for enhancing the vitamin E and antioxidant contents of maize-derived foods through plant breeding. Toward this end, we conducted a genome-wide association study of six tocochromanol compounds and 14 of their sums, ratios, and proportions with a 281 maize inbred association panel that was genotyped for 591,822 SNP markers. In addition to providing further insight into the association between ZmVTE4 (γ-tocopherol methyltransferase) haplotypes and α-tocopherol content, we also detected a novel association between ZmVTE1 (tocopherol cyclase) and tocotrienol composition. In a pathway-level analysis, we assessed the genetic contribution of 60 a priori candidate genes encoding the core tocochromanol pathway (VTE genes) and reactions for pathways supplying the isoprenoid tail and aromatic head group of tocochromanols. This analysis identified two additional genes, ZmHGGT1 (homogentisate geranylgeranyltransferase) and one prephenate dehydratase parolog (of four in the genome) that also modestly contribute to tocotrienol variation in the panel. Collectively, our results provide the most favorable ZmVTE4 haplotype and suggest three new gene targets for increasing vitamin E and antioxidant levels through marker-assisted selection.


Subject(s)
Genome-Wide Association Study , Tocopherols/metabolism , Tocotrienols/metabolism , Zea mays/genetics , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Genotype , Haplotypes , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Linkage Disequilibrium , Methyltransferases/genetics , Methyltransferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , Zea mays/metabolism
17.
PLoS One ; 7(12): e52506, 2012.
Article in English | MEDLINE | ID: mdl-23300689

ABSTRACT

The natural diversity of plant metabolism has long been a source for human medicines. One group of plant-derived compounds, the monoterpene indole alkaloids (MIAs), includes well-documented therapeutic agents used in the treatment of cancer (vinblastine, vincristine, camptothecin), hypertension (reserpine, ajmalicine), malaria (quinine), and as analgesics (7-hydroxymitragynine). Our understanding of the biochemical pathways that synthesize these commercially relevant compounds is incomplete due in part to a lack of molecular, genetic, and genomic resources for the identification of the genes involved in these specialized metabolic pathways. To address these limitations, we generated large-scale transcriptome sequence and expression profiles for three species of Asterids that produce medicinally important MIAs: Camptotheca acuminata, Catharanthus roseus, and Rauvolfia serpentina. Using next generation sequencing technology, we sampled the transcriptomes of these species across a diverse set of developmental tissues, and in the case of C. roseus, in cultured cells and roots following elicitor treatment. Through an iterative assembly process, we generated robust transcriptome assemblies for all three species with a substantial number of the assembled transcripts being full or near-full length. The majority of transcripts had a related sequence in either UniRef100, the Arabidopsis thaliana predicted proteome, or the Pfam protein domain database; however, we also identified transcripts that lacked similarity with entries in either database and thereby lack a known function. Representation of known genes within the MIA biosynthetic pathway was robust. As a diverse set of tissues and treatments were surveyed, expression abundances of transcripts in the three species could be estimated to reveal transcripts associated with development and response to elicitor treatment. Together, these transcriptomes and expression abundance matrices provide a rich resource for understanding plant specialized metabolism, and promotes realization of innovative production systems for plant-derived pharmaceuticals.


Subject(s)
Gene Expression Profiling , Magnoliopsida/genetics , Magnoliopsida/metabolism , Secologanin Tryptamine Alkaloids/metabolism , Conserved Sequence , High-Throughput Nucleotide Sequencing , Humans , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Homology, Nucleic Acid
18.
Plant Cell Environ ; 32(11): 1538-47, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19558623

ABSTRACT

We measured the DeltaPsi and DeltapH components of the transthylakoid proton motive force (pmf) in light-adapted, intact tobacco leaves in response to moderate heat. The DeltaPsi causes an electrochromic shift (ECS) in carotenoid absorbance spectra. The light-dark difference spectrum has a peak at 518 nm and the two components of the pmf were separated by following the ECS for 25 s after turning the light off. The ECS signal was deconvoluted by subtracting the effects of zeaxanthin formation (peak at 505 nm) and the qE-related absorbance changes (peak at 535 nm) from a signal measured at 520 nm. Heat reduced DeltapH while DeltaPsi slightly increased. Elevated temperature accelerated ECS decay kinetics likely reflecting heat-induced increases in proton conductance and ion movement. Energy-dependent quenching (qE) was reduced by heat. However, the reduction of qE was less than expected given the loss of DeltapH. Zeaxanthin did not increase with heat in light-adapted leaves but it was higher than would be predicted given the reduced DeltapH found at high temperature. The results indicate that moderate heat stress can have very large effects on thylakoid reactions.


Subject(s)
Light , Nicotiana/physiology , Plant Leaves/radiation effects , Proton-Motive Force , Thylakoids/radiation effects , Chromatography, High Pressure Liquid , Hot Temperature , Hydrogen-Ion Concentration , Photosystem II Protein Complex , Plant Leaves/physiology , Spectrum Analysis , Thylakoids/physiology , Nicotiana/radiation effects , Xanthophylls/analysis , Zeaxanthins
19.
Planta ; 227(3): 527-38, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17924136

ABSTRACT

tie-dyed1 (tdy1) and sucrose export defective1 (sxd1) are recessive maize (Zea mays) mutants with nonclonal chlorotic leaf sectors that hyperaccumulate starch and soluble sugars. In addition, both mutants display similar growth-related defects such as reduced plant height and inflorescence development due to the retention of carbohydrates in leaves. As tdy1 and sxd1 are the only variegated leaf mutants known to accumulate carbohydrates in any plant, we investigated whether Tdy1 and Sxd1 function in the same pathway. Using aniline blue staining for callose and transmission electron microscopy to inspect plasmodesmatal ultrastructure, we determined that tdy1 does not have any physical blockage or alteration along the symplastic transport pathway as found in sxd1 mutants. To test whether the two genes function in the same genetic pathway, we constructed F(2) families segregating both mutations. Double mutant plants showed an additive interaction for growth related phenotypes and soluble sugar accumulation, and expressed the leaf variegation pattern of both single mutants indicating that Tdy1 and Sxd1 act in separate genetic pathways. Although sxd1 mutants lack tocopherols, we determined that tdy1 mutants have wild-type tocopherol levels, indicating that Tdy1 does not function in the same biochemical pathway as Sxd1. From these and other data we conclude that Tdy1 and Sxd1 function independently to promote carbon export from leaves. Our genetic and cytological studies implicate Tdy1 functioning in veins, and a model discussing possible functions of TDY1 is presented.


Subject(s)
Carbohydrate Metabolism/physiology , Plant Leaves/metabolism , Plant Proteins/metabolism , Zea mays/physiology , Carbon/metabolism , Chlorophyll/metabolism , Metabolic Networks and Pathways/physiology , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Mutation , Phenotype , Plant Leaves/ultrastructure , Plant Proteins/genetics , Sucrose/metabolism , Tocopherols/metabolism , Zea mays/ultrastructure
20.
Proc Natl Acad Sci U S A ; 103(49): 18834-41, 2006 Dec 05.
Article in English | MEDLINE | ID: mdl-17077148

ABSTRACT

Vitamin E is an essential nutrient for humans and is obtained primarily from food, especially oil, derived from the seed of plants. Genes encoding the committed steps in vitamin E synthesis in plants (VTE, loci 1-5) have been isolated and used for tocopherol pathway engineering with various degrees of success. As a complement to such approaches we have used quantitative trait loci analysis with two sets of Arabidopsis thaliana recombinant inbred lines and have identified 14 QVE (quantitative vitamin E) loci affecting tocopherol content and composition in seeds. Five QVE intervals contain VTE loci that are likely QVE gene candidates. Nine QVE intervals do not contain VTE loci and therefore identify novel loci affecting seed tocopherol content and composition. Several near-isogenic lines containing introgressions of the accession with increased vitamin E levels were shown to confer significantly elevated tocopherol levels compared with the recurrent parent. Fine-mapping has narrowed QVE7 (a gamma-tocopherol quantitative trait loci) to an 8.5-kb interval encompassing two genes. Understanding the basis of the QVE loci in Arabidopsis promises to provide insight into the regulation and/or metabolism of vitamin E in plants and has clear ramifications for improving the nutritional content of crops through marker-assisted selection and metabolic engineering.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Genetic Variation , Seeds/metabolism , Vitamin E/metabolism , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...