Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Environ Microbiol ; 26(3): e16613, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38509764

ABSTRACT

Raspberry production is under threat from the emerging fungal pathogenic genus Cladosporium. We used amplicon-sequencing, coupled with qPCR, to investigate how fruit age, fruit location within a polytunnel, polytunnel location and sampling date affected the fruit epiphytic microbiome. Fruit age was the most important factor impacting the fungal microbiome, followed by sampling date and polytunnel location. In contrast, polytunnel location and fruit age were important factors impacting the bacterial microbiome composition, followed by the sampling date. The within-tunnel location had a small significant effect on the fungal microbiome and no effect on the bacterial microbiome. As fruit ripened, fungal diversity increased and the bacterial diversity decreased. Cladosporium was the most abundant fungus of the fruit epiphytic microbiome, accounting for nearly 44% of all fungal sequences. Rotorod air samplers were used to study how the concentration of airborne Cladosporium inoculum (quantified by qPCR) varied between location (inside and outside the polytunnel) and time (daytime vs. nighttime). Quantified Cladosporium DNA was significantly higher during the day than the night and inside the polytunnel than the outside. This study demonstrated the dynamic nature of epiphytic raspberry fruit microbiomes and airborne Cladosporium inoculum within polytunnels, which will impact disease risks on raspberry fruit.


Subject(s)
Cladosporium , Rubus , Cladosporium/genetics , Rubus/microbiology , Fruit/microbiology
2.
Int J Food Microbiol ; 394: 110176, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-36989929

ABSTRACT

Oats are highly susceptible to infection by Fusarium species, especially F. langsethiae, F. poae and F. sporotrichioides which contaminate the grain with mycotoxins. Climate change is expected to affect fungal colonisation and associated mycotoxin production. The objective of this study was to examine the effect of acclimatisation to elevated CO2 on the growth and mycotoxin production capacity of these fungal species. Strains of F. langsethiae (FL; seven strains), F. poae (FP; two strains) and F. sporotrichioides (FS; one strain) were acclimatised by sub-culturing for 10 generations at either 400 or 1000 ppm CO2 under diurnal temperature conditions. At each sub-culturing, the effect of acclimatisation to elevated CO2 on (a) lag phase prior to growth, (b) growth rate on oat-based media was assessed. Additionally, the production of type A trichothecenes and related toxic secondary metabolites of sub-cultures after 1, 7 and 10 generations were assessed using LC-MS/MS qTRAP. The results showed that Fusarium strains had an increased lag time and growth rate in response to the combined effect of sub-culturing and elevated CO2 levels. T-2 + HT-2 production was affected by elevated CO2 in strain FL4 (7.1-fold increase) and a decrease in strain FL1 (2.0-fold decrease) at the first sub-culturing and FS (1.3-fold decrease) after 7 sub-cultures compared to ambient conditions. The effect of sub-culturing on T-2 + HT-2 production varied depending on the fungal strain. For strain FL4, significantly less T-2 + HT-2 toxins were produced after 10 generations (4.4-fold decrease) as compared to that under elevated CO2 conditions after one sub-culture, and no change was observed under ambient conditions. The FS strain showed significant stimulation of T-2 + HT-2 toxin production after 10 sub-cultured generations (1.1-fold increase) compared to the initial sub-culture of this strain under elevated CO2 conditions. The production of other toxic secondary metabolites was generally not impacted by elevated CO2 conditions or by sub-culture for 10 generations, with the exceptions of FL1 and FP1. FL1 produced significantly more neosolaniol after 10 generations, when compared to those after 1 and 7, regardless of the CO2 conditions. For FP1, elevated CO2 significantly triggered beauvericin production after an initial sub-culture when compared to ambient conditions at the same sub-culture stage (29-fold). FP1 acclimatisation to elevated CO2 led to a decrease of beauvericin production after 10 generations when compared to 1 (6-fold). In contrast, sub-culturing for 10 generations compared to 1 under ambient CO2 conditions resulted in an increase in this toxin (12-fold).


Subject(s)
Fusarium , Mycotoxins , T-2 Toxin , Mycotoxins/analysis , Avena/microbiology , Fusarium/metabolism , Carbon Dioxide/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , T-2 Toxin/analysis , Edible Grain/microbiology
3.
J Appl Microbiol ; 134(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36631297

ABSTRACT

AIM: We assessed the effect of exposing apple orchard soil to different temperatures and CO2 levels on the resident microbiome of soils from a conventionally managed and an organically managed apple orchard. The key difference between these two orchards was that synthetic fertilizers and pesticides are routinely used in the former one. METHODS AND RESULTS: To investigate the effect of CO2 and temperature, soil samples from each site at two depths were exposed to either elevated temperature (29°C) at either 5000 or 10 000 ppm for five weeks or control conditions (25°C + 400 ppm). Both bacterial and fungal communities were profiled with amplicon-sequencing. The differences between the two orchards were the most significant factor affecting the bacterial and fungal communities, contributing to 53.7-14.0% of the variance in Bray-Curtis ß diversity, respectively. Elevated CO2 concentration and increased temperature affected organic orchard microbial diversity more than the conventionally managed orchard. A number of candidate beneficial and pathogenic microorganisms had differential abundances when temperature and CO2 were elevated, but their effect on the plant is unclear. CONCLUSIONS: This study has highlighted that microbial communities in bulk soils are most significantly influenced by crop management practices compared to the climate conditions used in the study. The studied climate conditions had a more limited effect on microbial community diversity in conventionally managed soil samples than in organically managed soils.


Subject(s)
Malus , Microbiota , Soil , Malus/microbiology , Carbon Dioxide , Climate Change
4.
Phytopathol Res ; 5(1): 28, 2023.
Article in English | MEDLINE | ID: mdl-38800641

ABSTRACT

Apple rootstock genotypes confer different levels of tolerance to apple replant disease (ARD) and vigour to a newly replanted apple tree. A hybrid management system of rotating the rootstock genotype planted between successive generations and inter-row planting in the alleyways of orchards may minimise the severity of ARD symptoms. High-throughput sequencing of the fungal ITS and bacterial 16S rDNA regions was used to investigate the diversity, and differential taxa present in soils displaying symptoms of ARD. Candidate pathogens and beneficial microorganisms were correlated with the above-ground establishment of each rootstock genotype in a UK cider orchard. Our results suggest that the same rootstock or rootstock with closely related parentage to the previous rootstock had more severe ARD symptoms. Planting in the alleyway appeared an effective strategy to minimise the severity of symptoms irrespective of rootstock genotype. The planting location effect had a higher contribution to the variation in the rhizosphere microbiome than that of the rootstock genotype. No predicted causal agents for ARD could be identified to a taxonomic level to predict their function but two species associated with mycorrhizae, Pteridiospora spinosispora and Paraglomus laccatum were identified as inversely correlated with ARD severity and could be candidate beneficial species for apple, warranting further investigation and research. Our findings suggest that planting in the alleyways and planting rootstocks genetically dissimilar to the previously planted rootstock can be beneficial for tree establishment. We have also identified species inversely associated with ARD severity, making candidates for future research to test the antagonistic effect of the species against ARD pathogens in apple roots. Supplementary Information: The online version contains supplementary material available at 10.1186/s42483-023-00184-y.

5.
Toxins (Basel) ; 14(6)2022 06 17.
Article in English | MEDLINE | ID: mdl-35737077

ABSTRACT

Pistachio nuts can become colonized by mycotoxigenic fungi, especially Aspergillus flavus, resulting in contamination with aflatoxins (AFs). We examined the effect of gaseous O3 (50-200 ppm; 30 min; 6 L/min) on (a) in vitro germination, (b) mycelial growth, and (c) aflatoxin B1 (AFB1) production on a milled pistachio nut-based medium at different water activity (aw) levels and at 30 °C. This was complimented with in situ studies exposing raw pistachio nuts to 50-200 ppm of O3. Exposure of conidia to gaseous O3 initially resulted in lower germination percentages at different aw levels. However, 12 h after treatment, conidial viability recovered with 100% germination after 24-48 h. Growth rates of mycelial colonies were slightly decreased with the increase of the O3 dose, with significant inhibition only at 0.98 aw. The production of AFB1 after O3 treatment and storage for 10 days was stimulated in A. flavus colonies at 0.98 aw. Raw pistachio nuts inoculated with A. flavus conidia prior to O3 exposure showed a significant decrease in population after 20 days of storage. However, AFB1 contamination was stimulated in most O3 treatments. The relationship between exposure concentration, time and prevailing aw levels on toxin control needs to be better understood for these nuts.


Subject(s)
Aflatoxins , Ozone , Pistacia , Aflatoxin B1/analysis , Aflatoxins/analysis , Aspergillus flavus , Nuts/microbiology , Ozone/pharmacology , Pistacia/microbiology , Spores, Fungal
6.
Microorganisms ; 10(5)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35630299

ABSTRACT

There is interest in understanding the relationship between naturally contaminated commodities and the potential for the production of different useful and toxic secondary metabolites (SMs). This study examined the impact of interacting abiotic stress parameters of water availability and temperature of stored naturally contaminated maize on the SM production profiles. Thus, the effect of steady-state storage water activity (aw; 0.80−0.95) and temperature (20−35 °C) conditions on SM production patterns in naturally contaminated maize was examined. The samples were analysed using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) to evaluate (a) the total number of known SMs, (b) their concentrations, and (c) changes under two-way interacting environmental stress conditions. A total of 151 metabolites were quantified. These included those produced by species of the Aspergillus, Fusarium and Penicillium genera and other unspecified ones by other fungi or bacteria. There were significant differences in the numbers of SMs produced under different sets of interacting environmental conditions. The highest total number of SMs (80+) were present in maize stored at 20−25 °C and 0.95 aw. In addition, there was a gradation of SM production with the least number of SMs (20−30) produced under the driest conditions of 0.80 aw at 20−30 °C. The only exception was at 35 °C, where different production patterns occurred. There were a total of 38 Aspergillus-related SMs, with most detected at >0.85 aw, regardless of the temperature in the 50−500 ng/g range. For Fusarium-related SMs, the pattern was different, with approx. 10−12 SMs detected under all aw × temperature conditions with >50% produced at 500 ng/g. A total of 40−45 Penicillium-related SMs (50−500 ng/g) were detected in the stored maize but predominantly at 20−25 °C and 0.95 aw. Fewer numbers of SMs were found under marginal interacting abiotic stress storage conditions in naturally contaminated maize. There were approx. eight other known fungal SM present, predominantly in low concentrations (<50 ng/g), regardless of interacting abiotic conditions. Other unspecified SMs present consisted of <20 in low concentrations. The effect of interacting abiotic stress factors for the production of different suites of SMs to take account of the different ecological niches of fungal genera may be beneficial for identifying biotechnologically useful SMs.

7.
BMC Genomics ; 23(1): 158, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35193498

ABSTRACT

BACKGROUND: Fusarium langsethiae is a T-2 and HT-2 mycotoxins producing species firstly characterised in 2004. It is commonly isolated from oats in Northern Europe. T-2 and HT-2 mycotoxins exhibit immunological and haemotological effects in animal health mainly through inhibition of protein, RNA and DNA synthesis. The development of a high-quality and comprehensively annotated assembly for this species is therefore essential in providing the molecular understanding and the mechanism of T-2 and HT-2 biosynthesis in F. langsethiae to help develop effective control strategies. RESULTS: The F. langsethiae assembly was produced using PacBio long reads, which were then assembled independently using Canu, SMARTdenovo and Flye. A total of 19,336 coding genes were identified using RNA-Seq informed ab-initio gene prediction. Finally, predicting genes were annotated using the basic local alignment search tool (BLAST) against the NCBI non-redundant (NR) genome database and protein hits were annotated using InterProScan. Genes with blast hits were functionally annotated with Gene Ontology. CONCLUSIONS: We developed a high-quality genome assembly of a total length of 59 Mb and N50 of 3.51 Mb. Raw sequence reads and assembled genome is publicly available and can be downloaded from: GenBank under the accession JAFFKB000000000. All commands used to generate this assembly are accessible via GitHub: https://github.com/FadyMohareb/fusarium_langsethiae .


Subject(s)
Fusarium , Mycotoxins , Animals , Avena/genetics , Edible Grain/genetics , Fusarium/metabolism , Molecular Sequence Annotation , Mycotoxins/metabolism
8.
Article in English | MEDLINE | ID: mdl-35044892

ABSTRACT

This study has examined the pattern of mycotoxin contamination of maize destined for animal feed in different global regions over a period of 3 years (2018-2020) with up to 1000+ samples analysed in each year. Overall, >75% of samples in each of the survey years were contaminated with multiple mycotoxins regardless of the global region (Europe, Africa, Asia, South Americas countries). Using LC-MS/MS, it was possible to quantify the relative contamination present in the samples in each year from the different regions of eight different mycotoxins including aflatoxin B1 (AFB1), ochratoxin A (OTA) deoxynivalenol (DON), fumonisin B1 (FB1) and B2, zearalenone (ZEA), T-2 and HT-2 toxins. The trends in mycotoxin contamination showed that there was a consistent contamination with DON in the 3 sampling years in all four regions. Interestingly, AFB1 contamination was prevalent in all regions in 2018, but more predominant in Europe and in 2019. In contrast, in 2020 it was found to be the major contaminant in Africa only. However, FB1 contamination of maize which was prevalent in Europe in 2018, became more prevalent in Asia and LATAM countries in 2019 and even in African maize in 2020. Comparisons of contamination with different mycotoxins in each of the years globally showed significant differences for AFB1, FB1, DON and ZEA between the different years. These results are discussed in relation to the trends of contamination of maize with mixtures of mycotoxins and the implication for their control in this key commodity used as an important ingredient in animal feed.


Subject(s)
Mycotoxins , Zearalenone , Animals , Chromatography, Liquid , Food Contamination/analysis , Mycotoxins/analysis , Tandem Mass Spectrometry/methods , Zea mays , Zearalenone/analysis
9.
Fungal Biol ; 126(1): 82-90, 2022 01.
Article in English | MEDLINE | ID: mdl-34930561

ABSTRACT

Maize grown in both North and South America are now predominantly genetically modified (GM) cultivars with some resistance to herbicide, pesticide, or both. There is little information on the relative colonisation and aflatoxin B1 (AFB1) production with maize meal-based nutritional matrices based on kernels of non-GM maize and isogenic GM-ones by strains of Aspergillus flavus. The objectives were to examine the effect of interacting conditions of temperature (25-35 °C) and water availability (0.99-0.90 water activity, aw) on (a) mycelial growth, (b) AFB1 production and (c) develop contour maps of optimum and marginal conditions of these parameters for four strains of A. flavus on three different non-GM and isogenic GM-maize based nutritional media. The growth of the four strains of A. flavus (three aflatoxigenic; one non-aflatoxigenic) was relatively similar in relation to the temperature × aw conditions examined on both non-GM and GM-based matrices. Optimum growth overall was at 30-35 °C and 0.99 aw for all four strains. Under water stress (0.90 aw) growth was optimum at 35 °C. Statistically: non-GM, GM cultivars, temperature and aw all significantly affected growth rates. For AFB1 production, all single and interacting factors were statistically significant except for non-GM × GM cultivar. In conclusion, colonisation of GM- and non-GM nutritional sources was similar for the different A. flavus strains examined. The contour maps will be very useful for understanding the ecological niches for both toxigenic and non-toxigenic strains in the context of the competitive exclusion of those producing aflatoxins.


Subject(s)
Aflatoxins , Herbicides , Aflatoxin B1 , Aspergillus flavus/genetics , Zea mays
10.
Toxins (Basel) ; 13(6)2021 05 28.
Article in English | MEDLINE | ID: mdl-34071166

ABSTRACT

Pistachio nuts are an important economic tree nut crop which is used directly or processed for many food-related activities. They can become colonized by mycotoxigenic spoilage fungi, especially Aspergillus flavus, mainly resulting in contamination with aflatoxins (AFs), especially aflatoxin B1 (AFB1). The prevailing climate in which these crops are grown changes as temperature and atmospheric CO2 levels increase, and episodes of extreme wet/dry cycles occur due to human industrial activity. The objectives of this study were to evaluate the effect of interacting Climate Change (CC)-related abiotic factors of temperature (35 vs. 37 °C), CO2 (400 vs. 1000 ppm), and water stress (0.98-0.93 water activity, aw) on (a) growth (b) aflD and aflR biosynthetic gene expression and (c) AFB1 production by two strains A. flavus (AB3, AB10) in vitro on milled pistachio-based media and when colonizing layers of shelled raw pistachio nuts. The A. flavus strains were resilient in terms of growth on pistachio-based media and the colonisation of pistachio nuts with no significant difference when exposed to the interacting three-way climate-related abiotic factors. However, in vitro studies showed that AFB1 production was significantly stimulated (p < 0.05), especially when exposed to 1000 ppm CO2 at 0.98-0.95 aw and 35 °C, and sometimes in the 37 °C treatment group at 0.98 aw. The relative expression of the structural aflD gene involved in AFB1 biosynthesis was decreased or only slightly increased, relative to the control conditions at elevated CO, regardless of the aw level examined. For the regulatory aflR gene expression, there was a significant (p < 0.05) increase in 1000 ppm CO2 and 37 °C for both strains, especially at 0.95 aw. The in situ colonization of pistachio nuts resulted in a significant (p < 0.05) stimulation of AFB1 production at 35 °C and 1000 ppm CO2 for both strains, especially at 0.98 aw. At 37 °C, AFB1 production was either decreased, in strain AB3, or remained similar, as in strain AB10, when exposed to 1000 ppm CO2. This suggests that CC factors may have a differential effect, depending on the interacting conditions of temperature, exposure to CO2 and the level of water stress on AFB1 production.


Subject(s)
Aflatoxin B1/biosynthesis , Aspergillus flavus/metabolism , Climate Change , DNA-Binding Proteins/genetics , Fungal Proteins/genetics , Pistacia/microbiology , Transcription Factors/genetics , Aspergillus flavus/growth & development , Gene Expression
11.
Front Microbiol ; 12: 678406, 2021.
Article in English | MEDLINE | ID: mdl-34168633

ABSTRACT

Bread and intermediate moisture bakery products are mainly spoiled by yeasts and filamentous fungi. The inoculum load and preservation system used determines their shelf life. To extend the shelf life of such commodities, the use of chemical preservatives is the most common way to try and control the initiation of mold spoilage of bread. This study has utilized a rapid turbidimetric assay system (Bioscreen C) to examine the temporal efficacy of calcium propionate (CP) and potassium sorbate (PS) for controlling the growth of important bread spoilage fungi. The objectives were to compare the temporal growth of strains of three important spoilage fungi Hyphopichia burtonii (HB17), Paecilomyces variotii (PV11), and Penicillium roqueforti (PR06) isolated from visibly molded bread to (a) different concentrations of CP and PS (0-128 mM), (b) temperatures (25°C, 30°C), (c) water activity (aw; 0.95, 0.97), and (d) pH (5.0, 5.5). All three abiotic factors, pH, aw, and temperature, and preservative concentrations influenced the relative growth of the species examined. In general, PS was more effective than CP in inhibiting the growth of the strains of these three species. In addition, the Time to Detection (TTD) for the efficacy of the preservatives under the interacting abiotic factors was compared. The strain of Paecilomyces variotii (PV10) was the most tolerant to the preservatives, with the shortest TTD values for both preservatives. P. roqueforti was the most sensitive with the longest TTD values under all conditions examined. These results are discussed in the context of the evolution of resistance to food-grade preservatives by such spoilage fungi in bakery products.

12.
Sci Rep ; 11(1): 13522, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34188073

ABSTRACT

Aflatoxins (AFs) are produced by fungi in crops and can cause liver cancer. Permitted levels are legislated and batches of grain are rejected based on average concentrations. Corn grown in Southern Georgia (GA), USA, which experiences drought during the mid-silk growth period in June, is particularly susceptible to infection by Aspergillus section Flavi species which produce AFs. Previous studies showed strong association between AFs and June weather. Risk factors were developed: June maximum temperatures > 33 °C and June rainfall < 50 mm, the 30-year normals for the region. Future climate data were estimated for each year (2000-2100) and county in southern GA using the RCP 4.5 and RCP 8.5 emissions scenarios. The number of counties with June maximum temperatures > 33 °C and rainfall < 50 mm increased and then plateaued for both emissions scenarios. The percentage of years thresholds were exceeded was greater for RCP 8.5 than RCP 4.5. The spatial distribution of high-risk counties changed over time. Results suggest corn growth distribution should be changed or adaptation strategies employed like planting resistant varieties, irrigating and planting earlier. There were significantly more counties exceeding thresholds in 2010-2040 compared to 2000-2030 suggesting that adaptation strategies should be employed as soon as possible.

13.
Biology (Basel) ; 10(3)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804029

ABSTRACT

Optimising the use of biocontrol agents (BCAs) requires the temporal tracking of viable populations in the crop phyllosphere to ensure that effective control can be achieved. No sensitive systems for quantifying viable populations of commercially available BCAs, such as Bacillus subtilis and Gliocladium catenulatum, in the phyllosphere of crop plants are available. The objective of this study was to develop a method to quantify viable populations of these two BCAs in the crop phyllosphere. A molecular tool based on propidium monoazide (PMA) (PMAxx™-qPCR) capable of quantifying viable populations of these two BCAs was developed. Samples were treated with PMAxx™ (12.5-100 µM), followed by 15 min incubation, exposure to a 800 W halogen light for 30 min, DNA extraction, and quantification using qPCR. This provided a platform for using the PMAxx™-qPCR technique for both BCAs to differentiate viable from dead cells. The maximum number of dead cells blocked, based on the DNA, was 3.44 log10 for B. subtilis and 5.75 log10 for G. catenulatum. Validation studies showed that this allowed accurate quantification of viable cells. This method provided effective quantification of the temporal changes in viable populations of the BCAs in commercial formulations on lettuce leaves in polytunnel and glasshouse production systems.

14.
Int J Food Microbiol ; 348: 109203, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-33930835

ABSTRACT

In the UK and Northern Europe, ripening oats can become contaminated with T-2 and HT-2 mycotoxins, produced mainly by Fusarium langsethiae. There are indicative levels related to the maximum limits for oat grain for these toxins. The objectives of this study were to examine the effect of interacting conditions of temperature (10-30 °C) and water activity (aw, 0.995-0.90) on (a) lag times prior to growth, (b) growth and (c) T-2 and HT-2 toxins by two strains of F. langsethiae isolated from oats in the UK and compare this with the type strain (Fl201059) which has been genomically sequenced, and (d) develop (and validated with published data) a probabilistic models for impacts of temperature × aw on growth and toxin production. All three strains had an optimum aw range and temperature of 0.995-0.98 and 25 °C for growth. For T-2 + HT-2 production these were 0.995 aw and 20 °C. Overall, the type strain produced higher amounts of T-2 + HT-2 with a HT-2/T-2 ratio of up to 76. Using this study data sets and those from the literature, probabilistic models were developed and validated for growth and T-2 + HT-2 toxin production in relation to temperature × aw conditions. These models, when applied in stored oats, will be beneficial in determining the conditions on the relative level of risk of contamination with these two toxins in the context of the EU indicative maximum levels.


Subject(s)
Avena/microbiology , Edible Grain/microbiology , Fusarium/metabolism , Mycotoxins/analysis , T-2 Toxin/analogs & derivatives , Europe , Fusarium/classification , Fusarium/isolation & purification , T-2 Toxin/analysis , Temperature , Water
15.
World J Microbiol Biotechnol ; 37(4): 57, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33625606

ABSTRACT

The objective was to screen and evaluate the anti-fungal activity of lactic acid bacteria (LABs) isolated from Malaysian fermented foods against two Trichophyton species. A total of 66 LAB strains were screened using dual culture assays. This showed that four LAB strains were very effective in inhibiting growth of T. rubrum but not T. interdigitale. More detailed studies with Lactobacillus plantarum strain HT-W104-B1 showed that the supernatant was mainly responsible for inhibiting the growth of T. rubrum. The minimum inhibitory concentration (MIC), inhibitory concentration, the 50% growth inhibition (IC50) and minimum fungicide concentration (MFC) were 20 mg/mL, 14 mg/mL and 30 mg/mL, respectively. A total of six metabolites were found in the supernatant, with the two major metabolites being L-lactic acid (19.1 mg/g cell dry weight (CDW)) and acetic acid (2.2 mg/g CDW). A comparative study on keratin agar media showed that the natural mixture in the supernatants predominantly contained L-lactic and acetic acid, and this significantly controlled the growth of T. rubrum. The pure two individual compounds were less effective. Potential exists for application of the natural mixture of compounds for the treatment of skin infection by T. rubrum.


Subject(s)
Antifungal Agents/pharmacology , Arthrodermataceae/drug effects , Biological Control Agents/pharmacology , Fermented Foods/microbiology , Lactobacillus plantarum/metabolism , Trichophyton/drug effects , Acetic Acid/metabolism , Acetic Acid/pharmacology , Arthrodermataceae/growth & development , Culture Media/metabolism , Lactic Acid/metabolism , Lactic Acid/pharmacology , Lactobacillus plantarum/isolation & purification , Microbial Sensitivity Tests , Tinea/drug therapy , Trichophyton/pathogenicity
16.
Fungal Biol ; 125(2): 115-122, 2021 02.
Article in English | MEDLINE | ID: mdl-33518201

ABSTRACT

Little is known on the impact that climate change (CC) may have on Aspergillus carbonarius and Ochratoxin A (OTA) contamination of grapes, especially in the Mediterranean region where in CC scenarios temperature are expected to increase by +2-5 °C and CO2 from 400 to 800/1200 ppm. This study examined the effect of (i) current and increased temperature in the alternating 11.5 h dark/12.5 h light cycle (15-28 °C vs 18-34 °C), representative of the North Apulia area, South Italy and (ii) existing and predicted CO2 concentrations (400 vs 1000 ppm), on growth, expression of biosynthetic genes (AcOTApks, AcOTAnrps, AcOTAhal, AcOTAp450, AcOTAbZIP) and regulatory genes of Velvet complex (laeA/veA/velB, "velvet complex") involved in OTA biosynthesis and OTA phenotypic production by three strains of A. carbonarius. The experiments made on a grape-based matrix showed that elevated CO2 resulted in a general stimulation of growth and OTA production. These results were also supported by the up-regulation of both structural and regulatory genes involved in the OTA biosynthesis. Our work has shown for the first time that elevated CO2 concentration in the Mediterranean region may result in an increased risk of OTA contamination in the wine production chain.


Subject(s)
Aspergillus , Climate Change , Gene Expression , Ochratoxins , Vitis , Aspergillus/genetics , Aspergillus/growth & development , Aspergillus/metabolism , Carbon Dioxide , Italy , Ochratoxins/metabolism , Temperature , Vitis/chemistry
17.
Fungal Biol ; 125(2): 89-94, 2021 02.
Article in English | MEDLINE | ID: mdl-33518209

ABSTRACT

The aim was to decipher the temporal impact of key interacting climate change (CC) abiotic factors of temperature (30 vs 37 °C), water activity (aw; 0.985 vs 0.930) and CO2 exposure (400 vs 1000 ppm) on (a) growth of Aspergillus flavus and effects on (b) gene expression of a structural (aflD) and key regulatory gene (aflR) involved in aflatoxin B1 (AFB1) biosynthesis and (c) AFB1 production on a yeast extract sucrose medium over a period of 10 days. A. flavus grew and produced AFB1 very early with toxin detected after only 48 h. Both growth and toxin production were significantly impacted by the interacting abiotic factors. The relative expression of the aflD gene was significantly influenced by temperature; aflR gene expression was mainly modulated by time. However, no clear relationship was observed for both genes with AFB1 production over the experimental time frame. The optimum temperature for AFB1 production was 30 °C. Maximum AFB1 production occurred between days 4-8. Exposure to higher CO2 conditions simulating forecasted CC conditions resulted in the amount of AFB1 produced in elevated temperature (37 °C) being higher than with the optimum temperature (30 °C) showing a potential for increased risk for human/animal health due to higher accumulation of this toxin.


Subject(s)
Aflatoxin B1 , Aspergillus flavus , Temperature , Aflatoxin B1/genetics , Aflatoxin B1/metabolism , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Gene Expression Regulation, Fungal , Genes, Regulator , Kinetics
18.
Fungal Biol ; 125(1): 62-68, 2021 01.
Article in English | MEDLINE | ID: mdl-33317777

ABSTRACT

Penicillium verrucosum contaminates temperate cereals with ochratoxin A (OTA) during harvesting and storage. We examined the effect of temperature (25 vs 30 oC), CO2 (400 vs 1000 ppm) and matric/solute stress (-2.8 vs -7.0 MPa) on (i) growth, (ii) key OTA biosynthetic genes and (iii) OTA production on a milled wheat substrate. Growth was generally faster under matric than solute stress at 25 oC, regardless of CO2 concentrations. At 30 oC, growth of P. verrucosum was significantly reduced under solute stress in both CO2 treatments, with no growth observed at -2.8 MPa (=0.98 water activity, aw) and 1000 ppm CO2. Overall, growth patterns under solute stress was slower in elevated CO2 than under matric stress when compared with existing conditions. The otapksPV gene expression was increased under elevated CO2 levels in matric stress treatments. There was fewer effects on the otanrpsPV biosynthetic gene. This pattern was paralleled with the production of OTA under these conditions. This suggest that P. verrucosum is able to actively grow and survive in both soil and on crop debris under three way interacting climate-related abiotic factors. This resilience suggests that they would still be able to pose an OTA contamination risk in temperate cereals post-harvest.


Subject(s)
Gene Expression Regulation, Fungal , Ochratoxins , Penicillium , Climate Change , Gene Expression Regulation, Fungal/physiology , Ochratoxins/analysis , Ochratoxins/biosynthesis , Penicillium/chemistry , Penicillium/genetics , Penicillium/growth & development , Penicillium/metabolism , Triticum/metabolism
19.
Microorganisms ; 10(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35056498

ABSTRACT

There is little knowledge of the effect of acclimatization of Aspergillus flavus strains to climate-related abiotic factors and the subsequent effects on growth and aflatoxin B1 (AFB1) production. In this study, two strains of A. flavus (AB3, AB10) were acclimatized for five generations in elevated CO2 (1000 ppm × 37 °C) on a milled pistachio-based medium. A comparison was made of the effects of non-acclimatized strains and those that were acclimatized when colonizing layers of pistachio nuts exposed to 35 or 37 °C, 400 or 1000 ppm CO2, and 0.93 or 0.98 water activity (aw), respectively. Acclimatization influenced the fitness in terms of the growth of one strain, while there was no significant effect on the other strain when colonizing pistachio nuts. AFB1, production was significantly stimulated after ten days colonization when comparing the non-acclimatized and the acclimatized AB3 strain. However, there was no significant increase when comparing these for strain AB10. This suggests that there may be inter-strain differences in the effects of acclimatization and this could have a differential influence on the mycotoxin contamination of such commodities.

20.
Compr Rev Food Sci Food Saf ; 19(2): 643-669, 2020 03.
Article in English | MEDLINE | ID: mdl-33325175

ABSTRACT

In this review, we present the current information on development and applications of biological control against phytopathogenic organisms as well as mycotoxigenic fungi in Malaysia as part of the integrated pest management (IPM) programs in a collective effort to achieve food security. Although the biological control of phytopathogenic organisms of economically important crops is well established and widely practiced in Malaysia with considerable success, the same cannot be said for mycotoxigenic fungi. This is surprising because the year round hot and humid Malaysian tropical climate is very conducive for the colonization of mycotoxigenic fungi and the potential contamination with mycotoxins. This suggests that less focus has been made on the control of mycotoxigenic species in the genera Aspergillus, Fusarium, and Penicillium in Malaysia, despite the food security and health implications of exposure to the mycotoxins produced by these species. At present, there is limited research in Malaysia related to biological control of the key mycotoxins, especially aflatoxins, Fusarium-related mycotoxins, and ochratoxin A, in key food and feed chains. The expected threats of climate change, its impacts on both plant physiology and the proliferation of mycotoxigenic fungi, and the contamination of food and feed commodities with mycotoxins, including the discovery of masked mycotoxins, will pose significant new global challenges that will impact on mycotoxin management strategies in food and feed crops worldwide. Future research, especially in Malaysia, should urgently focus on these challenges to develop IPM strategies that include biological control for minimizing mycotoxins in economically important food and feed chains for the benefit of ensuring food safety and food security under climate change scenarios.


Subject(s)
Food Contamination/prevention & control , Fungi/growth & development , Mycotoxins , Plant Diseases/microbiology , Aspergillus/growth & development , Biological Control Agents , Crops, Agricultural/microbiology , Food Safety , Fusarium/growth & development , Malaysia , Penicillium/growth & development , Plant Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...