Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 297(2): 389-406, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16356508

ABSTRACT

An efficient multiscale-linking algorithm, based on the self-consistent integration of Brownian dynamics simulation of particle trajectories with the solution of the continuum-level conservation equation for particle concentration subject to an adaptive Neumann boundary condition that accounts for the blocking effect of deposition, is developed. The algorithm has been already validated in the case of deposition of noninteracting hard spheres [R.V. Magan, R. Sureshkumar, Multiscale Model. Simul. 2 (2004) 475]. In this study, the above algorithm is extended to incorporate particle interactions modeled by the DLVO theory. The simulations are used to identify a time scale at which the deposition process transitions from a power-law to an asymptotic regime. Detailed characterization of the two regimes is provided for a wide range of ionic strength, particle surface charge density, bulk volume fraction, and substrate potential values. The radial distribution functions obtained for various ionic strengths can be collapsed into a master curve when the radial distance is normalized with respect to a characteristic length scale of inter-particle repulsion. Moreover, simulation results suggest a rescaled, uniformly valid soft random sequential adsorption (RSA) model. Simulation results for the kinetics and monolayers structure compare favorably with experimental data, without the use of adjustable parameters. Comparison with other dynamic simulation techniques shows that while their predictions are qualitatively similar, notable quantitative differences exist especially for small ionic strengths.


Subject(s)
Colloids/chemistry , Models, Theoretical , Adsorption , Algorithms , Computer Simulation , Diffusion
2.
Nanotechnology ; 16(7): S545-53, 2005 Jul.
Article in English | MEDLINE | ID: mdl-21727476

ABSTRACT

Brownian dynamics simulations (BDSs) are performed to investigate the influence of interfacial electrochemical reaction rate on the evolution of coating morphology on circular fibres. The boundary condition for the fluid phase concentration, representing the balance between the rates of interfacial reaction and transport of ions by bulk diffusion, is incorporated into the BDS by using a reaction probability, P(s). Different modes of growth, ranging from diffusion limited ([Formula: see text]) to reaction controlled [Formula: see text], are studied. It is found that, consistent with experimental observations, two distinct morphological regimes exist, with a dense and uniform structure for [Formula: see text] (reaction limited deposition (RLD)) and an open and porous one as [Formula: see text] (diffusion limited deposition (DLD)). An analysis of the fractal dimension indicates that this morphological transition occurs at P(s)≈0.3. Long-time power-law scalings for the evolution of thickness [Formula: see text] and roughness (ξ) of the coating exist, i.e. [Formula: see text] with 0.86≤α≤0.91 and 0.56≤ß≤0.93 for 0.01≤P(s)≤1. These values are different from those reported for sequential, pseudo-time lattice simulations on planar surfaces, signifying the importance of multiparticle dynamics and surface curvature. The internal structure and porosity of the coating are characterized quantitatively by the radial density profile, pair correlation function, two-point probability function, void distribution function and pore area distribution. For RLD the radial density, ρ(n), remains nearly constant, while for DLD ρ(n) follows a power law, [Formula: see text]. The coating exhibits short ranged order in the RLD regime while a long range order is created by DLD. The void distribution function becomes broader with increasing P(s), indicating that in the RLD regime the coating consists of small and spherical pores, while in the DLD regime large and elongated pores are obtained. The pore area distribution shows narrower distributions in DLD for small pores, while the area of the largest pore increases by nearly three orders of magnitude as one moves from the RLD to the DLD regime. Such morphological diversity could be potentially exploited for applications such as percolation, catalysis and surface protection.

SELECTION OF CITATIONS
SEARCH DETAIL
...