Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biomacromolecules ; 22(3): 1159-1166, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33630590

ABSTRACT

A polymeric corona consisting of an alkyl-glycolic acid ethoxylate (CXEOY) surfactant offers a promising approach toward endowing proteins with thermotropic phase behavior and hyperthermal activity. Typically, preparation of protein-surfactant biohybrids is performed via chemical modification of acidic residues followed by electrostatic conjugation of an anionic surfactant to encapsulate single proteins. While this procedure has been applied to a broad range of proteins, modification of acidic residues may be detrimental to function for specific enzymes. Herein, we report on the one-pot preparation of biohybrids via covalent conjugation of surfactants to accessible lysine residues. We entrap the model enzyme hen egg-white lysozyme (HEWL) in a shell of carboxyl-functionalized C12EO10 or C12EO22 surfactants. With fewer surfactants, our covalent biohybrids display similar thermotropic phase behavior to their electrostatically conjugated analogues. Through a combination of small-angle X-ray scattering and circular dichroism spectroscopy, we find that both classes of biohybrids consist of a folded single-protein core decorated by surfactants. Whilst traditional biohybrids retain densely packed surfactant coronas, our biohybrids display a less dense and heterogeneously distributed surfactant coverage located opposite to the catalytic cleft of HEWL. In solution, this surfactant coating permits 7- or 3.5-fold improvements in activity retention for biohybrids containing C12EO10 or C12EO22, respectively. The reported alternative pathway for biohybrid preparation offers a new horizon to expand upon the library of proteins for which functional biohybrid materials can be prepared. We also expect that an improved understanding of the distribution of tethered surfactants in the corona will be crucial for future structure-function investigations.


Subject(s)
Nanoparticles , Surface-Active Agents , Circular Dichroism , Polymers , Static Electricity
2.
ACS Macro Lett ; 10(2): 167-179, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33628618

ABSTRACT

Electrostatically coassembled micelles constitute a versatile class of functional soft materials with broad application potential as, for example, encapsulation agents for nanomedicine and nanoreactors for gels and inorganic particles. The nanostructures that form upon the mixing of selected oppositely charged (block co)polymers and other ionic species greatly depend on the chemical structure and physicochemical properties of the micellar building blocks, such as charge density, block length (ratio), and hydrophobicity. Nearly three decades of research since the introduction of this new class of polymer micelles shed significant light on the structure and properties of the steady-state association colloids. Dynamics and out-of-equilibrium processes, such as (dis)assembly pathways, exchange kinetics of the micellar constituents, and reaction-assembly networks, have steadily gained more attention. We foresee that the broadened scope will contribute toward the design and preparation of otherwise unattainable structures with emergent functionalities and properties. This Viewpoint focuses on current efforts to study such dynamic and out-of-equilibrium processes with greater spatiotemporal detail. We highlight different approaches and discuss how they reveal and rationalize similarities and differences in the behavior of mixed micelles prepared under various conditions and from different polymeric building blocks.

3.
J Colloid Interface Sci ; 550: 73-80, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31055139

ABSTRACT

We report on the phase behavior of a technical grade and commercially available diglycerol monoisostearate, C41V, and its use for the preparation of nanostructured liquid crystal dispersions (hexosomes). C41V in water forms a reverse hexagonal liquid crystal at room temperature and in a wide range of concentrations (0.5-95 wt%); this hexagonal liquid crystal is stable up to 70 °C. A simple and effective method has been developed to disperse hexosomes with an encapsulated active molecule (Ketoprofen) that consists of (1) producing a nano-emulsion stabilized by an amphiphilic block copolymer (Pluronic F127) and containing ethyl acetate and C41V by using ultrasounds and (2) evaporating the solvent to produce hexosomes. The size of the hexosomes and ultrasound dispersion time is markedly reduced by using ethyl acetate as an auxiliary solvent with an optimal initial ratio of C41V:ethyl acetate of 50:50. Dynamic light scattering shows that the size of the hexosomes decreases as the concentration of stabilizer F127 or encapsulated Ketoprofen is increased. The lattice parameter in the hexagonal structure is calculated from small angle scattering data to be ca. 5.3  nm and is only slightly dependent on the amount of F127 and/or encapsulated Ketoprofen. Cryo electron microscopy reveals that the samples contain hexosomes and these coexist with spherical, likely F127 micelles. Lastly, hexosomes show a pH responsive release of Ketoprofen which could be useful for target delivery in the gastrointestinal tract.

4.
ACS Appl Mater Interfaces ; 8(45): 31231-31238, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27775339

ABSTRACT

Carbon nanofibers (CNFs) with high surface area (820 m2/g) have been successfully prepared by a nanocasting approach using silica nanofibers obtained from chromonic liquid crystals as a template. CNFs with randomly oriented graphitic layers show outstanding electrochemical supercapacitance performance, exhibiting a specific capacitance of 327 F/g at a scan rate of 5 mV/s with a long life-cycling capability. Approximately 95% capacitance retention is observed after 1000 charge-discharge cycles. Furthermore, about 80% of capacitance is retained at higher scan rates (up to 500 mV/s) and current densities (from 1 to 10 A/g). The high capacitance of CNFs comes from their porous structure, high pore volume, and electrolyte-accessible high surface area. CNFs with ordered graphitic layers were also obtained upon heat treatment at high temperatures (>1500 °C). Although it is expected that these graphitic CNFs have increased electrical conductivity, in the present case, they exhibited lower capacitance values due to a loss in surface area during thermal treatment. High-surface-area CNFs can be used in sensing applications; in particular, they showed selective differential adsorption of volatile organic compounds such as pyridine and toluene. This behavior is attributed to the free diffusion of these volatile aromatic molecules into the pores of CNFs accompanied by interactions with sp2 carbon structures and other chemical groups on the surface of the fibers.

SELECTION OF CITATIONS
SEARCH DETAIL
...