Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36232499

ABSTRACT

Using structural relaxation calculations and first-principles molecular dynamics (FPMD), we performed numerical simulations to explore the interaction of a 2D MoS2 surface and a platinum atom, calculating the optical properties of the resulting material. We explored three initial positions for the interaction of the Pt atom and the pristine MoS2 surface, plus another position between Pt and the MoS2 surface with a sulfur vacancy VS. The surface absorbed the Pt atom in all cases considered, with absorption energies ranging from -2.77 eV to -5.83 eV. We calculated the optical properties and band structure of the two cases with the largest absorption energies (-3.45 eV and -5.83 eV). The pristine MoS2 is a semiconductor with a gap of around 1.80 eV. With the adsorption of the Pt atom (the -3.45 eV case), the material reduces its band gap to 0.95 eV. Additionally, the optical absorption in the visible range is greatly increased. The energy band structure of the 2D MoS2 with a sulfur vacancy VS shows a band gap of 0.74 eV, with consequent changes in its optical properties. After the adsorption of Pt atoms in the VS vacancy, the material has a band gap of 1.06 eV. In this case, the optical absorption in the visible range increases by about eight times. The reflectivity in the infrared range gets roughly doubled for both situations of the Pt-absorbed atom considered. Finally, we performed two FPMD runs at 300 K to test the stability of the cases with the lowest and highest absorption energies observed, confirming the qualitative results obtained with the structural relaxations.


Subject(s)
Molybdenum , Platinum , Semiconductors , Sulfur
2.
Int J Mol Sci ; 23(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35563323

ABSTRACT

Using DFT simulations, we studied the interaction of a semifullerene C30 and a defected graphene layer. We obtained the C30 chemisorbs on the surface. We also found the adsorbed C30 chemisorbs, Li, Ti, or Pt, on its concave part. Thus, the resulting system (C30-graphene) is a graphene layer decorated with a metal-doped C30. The adsorption of the molecules depends on the shape of the base of the semifullerene and the dopant metal. The CO molecule adsorbed without dissociation in all cases. When the bottom is a pentagon, the adsorption occurs only with Ti as the dopant. It also adsorbs for a hexagon as the bottom with Pt as the dopant. The carbon dioxide molecule adsorbs in the two cases of base shape but only when lithium is the dopant. The adsorption occurs without dissociation. The ozone molecule adsorbs on both surfaces. When Ti or Pt are dopants, we found that the O3 molecule always dissociates into an oxygen molecule and an oxygen atom. When Li is the dopant, the O3 molecule adsorbs without dissociation. Methane did not adsorb in any case. Calculating the recovery time at 300 K, we found that the system may be a sensor in several instances.


Subject(s)
Graphite , Ozone , Carbon Dioxide , Carbon Monoxide , Ions , Lithium , Methane , Oxygen
3.
Int J Mol Sci ; 22(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202099

ABSTRACT

We performed ab initio numerical simulations with the density functional theory to investigate the variations in the band structure, optical absorption, and the reflectivity of vacancy-graphene doped with nitrogen, oxygen, and fluorine for different densities. We considered the density values 0.78%, 1.02%, 1.39%, 2.00%, 3.12%, 5.55%, and 12.5% for the vacancies and doping. In the infrared and visible ranges for all cases, vacancies included, there is a substantial increment in the absorption and reflectivity concerning graphene. The most significant changes are for fluorine and oxygen at a concentration of 12.5%.


Subject(s)
Fluorine/chemistry , Graphite/chemistry , Nitrogen/chemistry , Oxygen/chemistry , Spectrum Analysis , Electrons , Molecular Structure , Nanoparticles/chemistry
4.
Chemphyschem ; 15(18): 4042-8, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25257619

ABSTRACT

The interaction of H2 and O2 molecules in the presence of nitrogen-doped graphene decorated with either a palladium or gold atom was investigated by using density functional theory. It was found that two hydrogen molecules were adsorbed on the palladium atom. The interaction of these adsorbed hydrogen molecules with two oxygen molecules generates two hydrogen peroxide molecules first through a Eley-Rideal mechanism and then through a Langmuir-Hinshelwood mechanism. The barrier energies for this reaction were small; therefore, we expect that this process may occur spontaneously at room temperature. In the case of gold, a single hydrogen molecule is adsorbed and dissociated on the metal atom. The interaction of the dissociated hydrogen molecule on the surface with one oxygen molecule generates a water molecule. The competitive adsorption between oxygen and hydrogen molecules slightly favors oxygen adsorption.


Subject(s)
Gold/chemistry , Graphite/chemistry , Hydrogen/chemistry , Nitrogen/chemistry , Oxygen/chemistry , Palladium/chemistry , Adsorption , Models, Chemical , Models, Molecular , Pyridines/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...