Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0300438, 2024.
Article in English | MEDLINE | ID: mdl-38687812

ABSTRACT

Gryllus bimaculatus (Orthoptera: Gryllidae) is widely considered an excellent nutrient source for food and feed. Despite its economic importance, there is limited information on the impact of temperature on the bionomics of this cricket to guide its effective and sustainable mass production in its geographical range. The biological parameters of G. bimaculatus were investigated at eight different temperatures ranging from 20-40˚C. The Insect Life-Cycle Modelling (ILCYM) program was used to fit linear and non-linear functions to the data to describe the influence of temperature on life history parameters and its farmability under the current and projected climate for 2050. Our results revealed that G. bimaculatus was able to complete its lifecycle in the temperature range of 20°C to 37°C with a maximum finite rate of population increase (= 1.14) at 35°C. The developmental time of G. bimaculatus decreased with increasing temperature. The least developmental time and mortality were attained at 32°C. The highest wet length and mass of G. bimaculatus occurred at 32°C. The lowest temperature threshold for G. bimaculatus egg and nymph development was approximated using linear regression functions to be at 15.9°C and 16.2°C with a temperature constant of 108.7 and 555.6 degree days. The maximum fecundity (2301.98 eggs per female), net reproductive rate (988.42 daughters/ generation), and intrinsic rate of natural increase (0.134 days) were recorded at 32°C and the shortest doubling of 5.2 days was observed at 35°C. Based on our findings G. bimaculatus can be farmed in countries with temperatures ranging between 20 and 37°C around the globe. These findings will help the cricket farmers understand and project the cricket population dynamics around the world as influenced by temperature, and as such, will contribute to more efficient farming.


Subject(s)
Gryllidae , Temperature , Animals , Gryllidae/growth & development , Gryllidae/physiology , Female , Male , Life Cycle Stages
2.
Insects ; 13(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36135491

ABSTRACT

Following its recent invasion of African countries, fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae), now co-exists with resident stemborers such as Busseola fusca (Lepidoptera: Noctuidae) and Chilo partellus (Lepidoptera: Crambidae) causing severe damage to maize crops. Due to niche overlap, interspecific interactions occur among the three species, but the mechanisms and degree remain unclear. In this study, we assessed plant-mediated intraspecific and interspecific interactions, predation in laboratory and semi-field settings, and larval field occurrence of S. frugiperda and the two stemborer species. Larval feeding assays to evaluate competitive plant-mediated interactions demonstrated that initial S. frugiperda feeding negatively affected subsequent stemborer larval feeding and survival, suggesting induction of herbivore-induced mechanisms by S. frugiperda, which deters establishment and survival of competing species. Predation assays showed that, at different developmental larval stages, second−sixth instars of S. frugiperda preyed on larvae of both B. fusca and C. partellus. Predation rates of S. frugiperda on stemborers was significantly higher than cannibalism of S. frugiperda and its conspecifics (p < 0.001). Cannibalism of S. frugiperda in the presence of stemborers was significantly lower than in the presence of conspecifics (p = 0.04). Field surveys showed a significantly higher number of S. frugiperda larvae than stemborers across three altitudinally different agroecological zones (p < 0.001). In conclusion, this study showed that the invasive S. frugiperda exhibited a clear competitive advantage over resident stemborers within maize cropping systems in Kenya. Our findings reveal some of the possible mechanisms employed by S. frugiperda to outcompete resident stemborers and provide crucial information for developing pest management strategies for these lepidopteran pests.

3.
Front Nutr ; 7: 537915, 2020.
Article in English | MEDLINE | ID: mdl-33511150

ABSTRACT

Edible crickets are among the praised insects that are gaining recognition as human food and livestock feed with a potential of contributing to food security and reduction of malnutrition. Globally, the sustainable use of crickets as food or feed is undermined by lack of information on the number of the edible crickets, the country where they are consumed, and the developmental stages consumed. Furthermore, lack of data on their nutritional content and the potential risks to potential consumers limits their consumption or inclusion into other food sources. We reviewed published literature on edible cricket species, countries where they are consumed, and the stage at which they are consumed. We further reviewed information on their nutritional content, the safety of cricket consumption, and the sensory qualities of the edible crickets. We also looked at other benefits derived from the crickets, which include ethnomedicine, livestock feed, pest management strategies, contribution to economic development, and livelihood improvement, particularly in terms of use as food preservatives and use within music, sports, and cultural entomology. Lastly, we reviewed information on the farming of edible crickets. In this review, we report over 60 cricket species that are consumed in 49 countries globally. Nutritionally, crickets are reported to be rich in proteins, ranging from 55 to 73%, and lipids, which range from 4.30 to 33.44% of dry matter. The reported amount of polyunsaturated fatty acids (PUFA) is 58% of the total fatty acids. Edible crickets contain an appreciable amount of macro- and micro-mineral elements such as calcium, potassium, magnesium, phosphorus, sodium, iron, zinc, manganese, and copper. Also, the crickets are rich in the required amount of vitamins such as B group vitamins and vitamins A, C, D, E, and K. Overall, the cricket species examined in this review are safe to be consumed, and they display high proximate content that can replace plant and livestock products. The crickets play valuable roles in contributing to the economies of many countries and livelihoods, and they have medicinal and social benefits. This review is expected to promote greater recognition of crickets as a source of food, feed, and other benefits in the world and encourage up-scaling by farming them for sustainable utilization.

4.
J Econ Entomol ; 112(2): 653-664, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30657915

ABSTRACT

A new native edible cricket species, Scapsipedus icipe Hugel and Tanga, has been described in Kenya for the first time. However, there is lack of information on suitable diets and their effects on the developmental time, survival, weight gain, body length, growth index, preoviposition, oviposition, postoviposition, fecundity, egg eclosion period, adult emergence, and longevity of this species, which are prerequisite for large-scale production. In this study, six diets (wheat bran, soybean, fish offal, pumpkin leaf, carrot, and maize meals) selected to vary in protein, carbohydrate, and fat content were evaluated. The developmental time and survival rate of the different life stages varied considerably on the various diets, with the shortest development and highest survival rate recorded when fed wheat bran diet. Preoviposition duration was significantly longer on maize and carrot diets (>10 d) compared with that recorded on the other diets (<8 d). Body weight and body length were significantly influenced by the different diets tested. Females of S. icipe fed on protein-rich diets (fish offal, soybean, and wheat bran) had significantly higher lifetime fecundity and fertility. Female-biased sex ratio was recorded on wheat bran and soybean diets, whereas male-biased sex ratio was recorded on maize and carrot diets. Our findings reveal that the impact of diet quality on the biological fitness parameters of S. icipe and the implication of the results are discussed in light of effective mass rearing of this species.


Subject(s)
Gryllidae , Agriculture , Animal Feed , Animals , Diet , Female , Kenya , Male , Tanzania
5.
Zootaxa ; 4486(3): 393-392, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30313752

ABSTRACT

A new cricket of the genus Scapsipedus is described from Kenya. The distribution, acoustic behavior, including call and courtship song, mitochondrial sequences, and data on the biology of that new species are given. This edible cricket is a very promising species for mass production for food and feed.


Subject(s)
Courtship , Gryllidae , Acoustics , Animals , Kenya
SELECTION OF CITATIONS
SEARCH DETAIL
...