Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 151(3): 1922, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35364962

ABSTRACT

Spatial active noise control (ANC) systems focus on minimizing unwanted acoustic noise over continuous spatial regions by generating anti-noise fields with secondary loudspeakers. Conventionally, error microphones are necessary inside the region to measure the channels from the secondary loudspeakers to the error microphones and record the residual sound field during the noise control. These error microphones highly limit the implementation of spatial ANC systems because of their impractical geometry and obstruction to the users from accessing the region. Recent advances, such as virtual sensing, focus on ANC with microphones placed away from the region. While these techniques relax the usage of error microphones during the noise control, an error microphone array remains necessary during the secondary channel estimation. In this paper, we propose a method to estimate secondary channels without using an error microphone array. Instead, a moving higher order microphone is applied to obtain the secondary channels from the secondary loudspeakers to the region of interest, which includes all desired error microphone locations. By simulation, we show that the proposed method is robust against various measuring errors introduced by the movement of the microphone and is suitable for the secondary channel estimation in spatial ANC systems.

2.
J Acoust Soc Am ; 147(1): 218, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32007004

ABSTRACT

Dynamic binaural rendering of Ambisonics considering head movements gives a highly realistic sensation to listeners owing to the precise localization and the presence of dynamic cues. Dealing with a head movement is often achieved in the spherical harmonic domain by multiplying Ambisonic signals by a Wigner D-matrix (WDM) with the aim of rotating signals in the opposite direction to the head movement. However, for a vertical rotation, the system requires an enormous computational cost owing to the structure of the WDM, whose number of block diagonal elements increases with the spherical harmonic order of Ambisonics. In this paper, a method is introduced to reduce the computational cost related to the vertical rotation by approximating a WDM with a banded WDM generated from the truncated sum of a power series expression of the WDM. By using an analytically derived upper bound of the approximation error, two methods are devised to determine the minimum bandwidth which archives the maximum computational cost reduction under the user-preferred threshold. The experimental results show that there is a trade-off between the approximation error and the computational cost and that these methods are applicable to the use case of interest, i.e., dynamic binaural rendering of Ambisonics.

SELECTION OF CITATIONS
SEARCH DETAIL
...