Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8186, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589457

ABSTRACT

We address the high accuracy and precision demands for analyzing large in situ or in operando spectral data sets. A dual-input artificial neural network (ANN) algorithm enables the compositional and depth-sensitive analysis of multinary materials by simultaneously evaluating spectra collected under multiple experimental conditions. To validate the developed algorithm, a case study was conducted analyzing complex Rutherford backscattering spectrometry (RBS) spectra collected in two scattering geometries. The dual-input ANN analysis excelled in providing a systematic analysis and precise results, showcasing its robustness in handling complex data and minimizing user bias. A comprehensive comparison with human supervision analysis and conventional single-input ANN analysis revealed a reduced susceptibility of the dual-input ANN analysis to inaccurately known setup parameters, a common challenge in material characterization. The developed multi-input approach can be extended to a wide range of analytical techniques, in which the combined analysis of measurements performed under different experimental conditions is beneficial for disentangling details of the material properties.

2.
Nature ; 617(7962): 706-710, 2023 05.
Article in English | MEDLINE | ID: mdl-37225880

ABSTRACT

The radionuclide thorium-229 features an isomer with an exceptionally low excitation energy that enables direct laser manipulation of nuclear states. It constitutes one of the leading candidates for use in next-generation optical clocks1-3. This nuclear clock will be a unique tool for precise tests of fundamental physics4-9. Whereas indirect experimental evidence for the existence of such an extraordinary nuclear state is substantially older10, the proof of existence has been delivered only recently by observing the isomer's electron conversion decay11. The isomer's excitation energy, nuclear spin and electromagnetic moments, the electron conversion lifetime and a refined energy of the isomer have been measured12-16. In spite of recent progress, the isomer's radiative decay, a key ingredient for the development of a nuclear clock, remained unobserved. Here, we report the detection of the radiative decay of this low-energy isomer in thorium-229 (229mTh). By performing vacuum-ultraviolet spectroscopy of 229mTh incorporated into large-bandgap CaF2 and MgF2 crystals at the ISOLDE facility at CERN, photons of 8.338(24) eV are measured, in agreement with recent measurements14-16 and the uncertainty is decreased by a factor of seven. The half-life of 229mTh embedded in MgF2 is determined to be 670(102) s. The observation of the radiative decay in a large-bandgap crystal has important consequences for the design of a future nuclear clock and the improved uncertainty of the energy eases the search for direct laser excitation of the atomic nucleus.

3.
ACS Photonics ; 10(1): 101-110, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36691430

ABSTRACT

We provide the first systematic characterization of the structural and photoluminescence properties of optically active centers fabricated upon implantation of 30-100 keV Mg+ ions in synthetic diamond. The structural configurations of Mg-related defects were studied by the electron emission channeling technique for short-lived, radioactive 27Mg implantations at the CERN-ISOLDE facility, performed both at room temperature and 800 °C, which allowed the identification of a major fraction of Mg atoms (∼30 to 42%) in sites which are compatible with the split-vacancy structure of the MgV complex. A smaller fraction of Mg atoms (∼13 to 17%) was found on substitutional sites. The photoluminescence emission was investigated both at the ensemble and individual defect level in the 5-300 K temperature range, offering a detailed picture of the MgV-related emission properties and revealing the occurrence of previously unreported spectral features. The optical excitability of the MgV center was also studied as a function of the optical excitation wavelength to identify the optimal conditions for photostable and intense emission. The results are discussed in the context of the preliminary experimental data and the theoretical models available in the literature, with appealing perspectives for the utilization of the tunable properties of the MgV center for quantum information processing applications.

4.
Nat Commun ; 12(1): 4421, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34285223

ABSTRACT

Nuclear spins in semiconductors are leading candidates for future quantum technologies, including quantum computation, communication, and sensing. Nuclear spins in diamond are particularly attractive due to their long coherence time. With the nitrogen-vacancy (NV) centre, such nuclear qubits benefit from an auxiliary electronic qubit, which, at cryogenic temperatures, enables probabilistic entanglement mediated optically by photonic links. Here, we demonstrate a concept of a microelectronic quantum device at ambient conditions using diamond as wide bandgap semiconductor. The basic quantum processor unit - a single 14N nuclear spin coupled to the NV electron - is read photoelectrically and thus operates in a manner compatible with nanoscale electronics. The underlying theory provides the key ingredients for photoelectric quantum gate operations and readout of nuclear qubit registers. This demonstration is, therefore, a step towards diamond quantum devices with a readout area limited by inter-electrode distance rather than by the diffraction limit. Such scalability could enable the development of electronic quantum processors based on the dipolar interaction of spin-qubits placed at nanoscopic proximity.

SELECTION OF CITATIONS
SEARCH DETAIL
...