Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
bioRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168170

ABSTRACT

Fluorescence microscopy is an invaluable tool in biology, yet its performance is compromised when the wavefront of light is distorted due to optical imperfections or the refractile nature of the sample. Such optical aberrations can dramatically lower the information content of images by degrading image contrast, resolution, and signal. Adaptive optics (AO) methods can sense and subsequently cancel the aberrated wavefront, but are too complex, inefficient, slow, or expensive for routine adoption by most labs. Here we introduce a rapid, sensitive, and robust wavefront sensing scheme based on phase diversity, a method successfully deployed in astronomy but underused in microscopy. Our method enables accurate wavefront sensing to less than λ/35 root mean square (RMS) error with few measurements, and AO with no additional hardware besides a corrective element. After validating the method with simulations, we demonstrate calibration of a deformable mirror > 100-fold faster than comparable methods (corresponding to wavefront sensing on the ~100 ms scale), and sensing and subsequent correction of severe aberrations (RMS wavefront distortion exceeding λ/2), restoring diffraction-limited imaging on extended biological samples.

2.
ACS Photonics ; 11(1): 42-52, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38249683

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) has had a tremendous impact on humanity. Prevention of transmission by disinfection of surfaces and aerosols through a chemical-free method is highly desirable. Ultraviolet C (UVC) light is uniquely positioned to achieve inactivation of pathogens. We report the inactivation of SARS-CoV-2 virus by UVC radiation and explore its mechanisms. A dose of 50 mJ/cm2 using a UVC laser at 266 nm achieved an inactivation efficiency of 99.89%, while infectious virions were undetectable at 75 mJ/cm2 indicating >99.99% inactivation. Infection by SARS-CoV-2 involves viral entry mediated by the spike glycoprotein (S), and viral reproduction, reliant on translation of its genome. We demonstrate that UVC radiation damages ribonucleic acid (RNA) and provide in-depth characterization of UVC-induced damage of the S protein. We find that UVC severely impacts SARS-CoV- 2 spike protein's ability to bind human angiotensin-converting enzyme 2 (hACE2) and this correlates with loss of native protein conformation and aromatic amino acid integrity. This report has important implications for the design and development of rapid and effective disinfection systems against the SARS-CoV-2 virus and other pathogens.

3.
Pediatr Neurol ; 147: 101-123, 2023 10.
Article in English | MEDLINE | ID: mdl-37598571

ABSTRACT

BACKGROUND: Tuberous sclerosis complex-associated neuropsychiatric disorders (TAND) are often present but underidentified and undertreated in individuals with tuberous sclerosis complex (TSC). The clinician-completed TAND-Lifetime Checklist (TAND-L) was developed to address this identification and treatment gap. Stakeholder engagement identified the need for a TAND Checklist that can (1) be completed by caregivers or individuals with TSC and (2) quantify TAND difficulties. The aim of this study was to develop a self-report quantified TAND Checklist (TAND-SQ) and conduct feasibility and acceptability testing. METHODS: This aim was addressed in three phases: (1) development of the TAND-SQ Checklist, (2) feasibility and acceptability testing of the "near-final" TAND-SQ Checklist, and (3) preparation of the final TAND-SQ Checklist. Participants included 23 technical experts from the TAND consortium in all phases and 58 lived experts (caregivers and individuals with TSC) in phase 2. All participants completed a TAND-SQ Checklist and a checklist feedback form. RESULTS: Phase 1 additions to the TAND-SQ, when compared with the TAND-L, included four new items and a quantification rating. Phase 2 showed high ratings for the "near-final" TAND-SQ Checklist on comprehensiveness, clarity, ease of use, and overall acceptability. In phase 3, questions on strengths, strategies, and a TAND Cluster Profile were added. CONCLUSION: The TAND-SQ Checklist is presented here for use by individuals with TSC and their caregivers. The next steps as part of the TANDem project include internal and external validation of the checklist and linking of TAND Cluster Profiles generated from the checklist to evidence-informed consensus recommendations within a smartphone application.


Subject(s)
Checklist , Tuberous Sclerosis , Humans , Self Report , Feasibility Studies , Tuberous Sclerosis/complications , Consensus
4.
Biomolecules ; 13(7)2023 06 28.
Article in English | MEDLINE | ID: mdl-37509085

ABSTRACT

Polyphosphoinositides (PPIns) are signalling messengers representing less than five per cent of the total phospholipid concentration within the cell. Despite their low concentration, these lipids are critical regulators of various cellular processes, including cell cycle, differentiation, gene transcription, apoptosis and motility. PPIns are generated by the phosphorylation of the inositol head group of phosphatidylinositol (PtdIns). Different pools of PPIns are found at distinct subcellular compartments, which are regulated by an array of kinases, phosphatases and phospholipases. Six of the seven PPIns species have been found in the nucleus, including the nuclear envelope, the nucleoplasm and the nucleolus. The identification and characterisation of PPIns interactor and effector proteins in the nucleus have led to increasing interest in the role of PPIns in nuclear signalling. However, the regulation and functions of PPIns in the nucleus are complex and are still being elucidated. This review summarises our current understanding of the localisation, biogenesis and physiological functions of the different PPIns species in the nucleus.


Subject(s)
Cell Nucleus , Phosphatidylinositols , Phosphatidylinositols/metabolism , Cell Nucleus/metabolism , Phosphatidylinositol Phosphates/metabolism , Cell Nucleolus/metabolism , Nuclear Envelope/metabolism
5.
J Adv Res ; 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37467961

ABSTRACT

INTRODUCTION: Posttranslational modification of proteins by reversible acetylation regulates key biological processes. Histone deacetylases (HDACs) catalyze protein deacetylation and are frequently dysregulated in tumors. This has spurred the development of HDAC inhibitors (HDACi). Such epigenetic drugs modulate protein acetylation, eliminate tumor cells, and are approved for the treatment of blood cancers. OBJECTIVES: We aimed to identify novel, nanomolar HDACi with increased potency over existing agents and selectivity for the cancer-relevant class I HDACs (HDAC1,-2,-3,-8). Moreover, we wanted to define how such drugs control the apoptosis-autophagy interplay. As test systems, we used human leukemic cells and embryonic kidney-derived cells. METHODS: We synthesized novel pyrimidine-hydroxamic acid HDACi (KH9/KH16/KH29) and performed in vitro activity assays and molecular modeling of their direct binding to HDACs. We analyzed how these HDACi affect leukemic cell fate, acetylation, and protein expression with flow cytometry and immunoblot. The publicly available DepMap database of CRISPR-Cas9 screenings was used to determine sensitivity factors across human leukemic cells. RESULTS: Novel HDACi show nanomolar activity against class I HDACs. These agents are superior to the clinically used hydroxamic acid HDACi SAHA (vorinostat). Within the KH-series of compounds, KH16 (yanostat) is the most effective inhibitor of HDAC3 (IC50 = 6 nM) and the most potent inducer of apoptosis (IC50 = 110 nM; p < 0.0001) in leukemic cells. KH16 though spares embryonic kidney-derived cells. Global data analyses of knockout screenings verify that HDAC3 is a dependency factor in 115 human blood cancer cells of different lineages, independent of mutations in the tumor suppressor p53. KH16 alters pro- and anti-apoptotic protein expression, stalls cell cycle progression, and induces caspase-dependent processing of the autophagy proteins ULK1 and p62. CONCLUSION: These data reveal that HDACs are required to stabilize autophagy proteins through suppression of apoptosis in leukemic cells. HDAC3 appears as a valid anti-cancer target for pharmacological intervention.

6.
Cancers (Basel) ; 14(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36230470

ABSTRACT

By forming specific functional entities, nuclear biomolecular condensates play an important function in guiding biological processes. PML biomolecular condensates, also known as PML nuclear bodies (NBs), are macro-molecular sub-nuclear organelles involved in central biological processes, including anti-viral response and cell fate control upon genotoxic stress. PML condensate formation is stimulated upon cellular stress, and relies on protein-protein interactions establishing a PML protein meshwork capable of recruiting the tumor suppressor p53, along with numerous modifiers of p53, thus balancing p53 posttranslational modifications and activity. This stress-regulated process appears to be controlled by liquid-liquid phase separation (LLPS), which may facilitate regulated protein-unmixing of p53 and its regulators into PML nuclear condensates. In this review, we summarize and discuss the molecular mechanisms underlying PML nuclear condensate formation, and how these impact the biological function of p53 in driving the cell death and senescence responses. In addition, by using an in silico approach, we identify 299 proteins which share PML and p53 as binding partners, thus representing novel candidate proteins controlling p53 function and cell fate decision-making at the level of PML nuclear biocondensates.

7.
Front Bioinform ; 2: 811053, 2022.
Article in English | MEDLINE | ID: mdl-36304307

ABSTRACT

The human mind shows extraordinary capability at recognizing patterns, while at the same time tending to underestimate the natural scope of random processes. Taken together, this easily misleads researchers in judging whether the observed characteristics of their data are of significance or just the outcome of random effects. One of the best tools to assess whether observed features fall into the scope of pure randomness is statistical significance testing, which quantifies the probability to falsely reject a chosen null hypothesis. The central parameter in this context is the p-value, which can be calculated from the recorded data sets. In case of p-values smaller than the level of significance, the null hypothesis is rejected, otherwise not. While significance testing has found widespread application in many sciences including the life sciences, it is hardly used in (bio-)physics. We propose here that significance testing provides an important and valid addendum to the toolbox of quantitative (single molecule) biology. It allows to support a quantitative judgement (the hypothesis) about the data set with a probabilistic assessment. In this manuscript we describe ways for obtaining valid p-values in two selected applications of single molecule microscopy: (i) Nanoclustering in single molecule localization microscopy. Previously, we developed a method termed 2-CLASTA, which allows to calculate a valid p-value for the null hypothesis of an underlying random distribution of molecules of interest while circumventing overcounting issues. Here, we present an extension to this approach, yielding a single overall p-value for data pooled from multiple cells or experiments. (ii) Single molecule trajectories. Data from a single molecule trajectory are inherently correlated, thus prohibiting a direct analysis via conventional statistical tools. Here, we introduce a block permutation test, which yields a valid p-value for the analysis and comparison of single molecule trajectory data. We exemplify the approach based on FRET trajectories.

8.
Front Hum Neurosci ; 16: 768575, 2022.
Article in English | MEDLINE | ID: mdl-35185496

ABSTRACT

The understanding of locomotion in neurological disorders requires technologies for quantitative gait analysis. Numerous modalities are available today to objectively capture spatiotemporal gait and postural control features. Nevertheless, many obstacles prevent the application of these technologies to their full potential in neurological research and especially clinical practice. These include the required expert knowledge, time for data collection, and missing standards for data analysis and reporting. Here, we provide a technological review of wearable and vision-based portable motion analysis tools that emerged in the last decade with recent applications in neurological disorders such as Parkinson's disease and Multiple Sclerosis. The goal is to enable the reader to understand the available technologies with their individual strengths and limitations in order to make an informed decision for own investigations and clinical applications. We foresee that ongoing developments toward user-friendly automated devices will allow for closed-loop applications, long-term monitoring, and telemedical consulting in real-life environments.

9.
PLoS One ; 17(2): e0263500, 2022.
Article in English | MEDLINE | ID: mdl-35120171

ABSTRACT

Single molecule localization microscopy (SMLM) has the potential to resolve structural details of biological samples at the nanometer length scale. Compared to room temperature experiments, SMLM performed under cryogenic temperature achieves higher photon yields and, hence, higher localization precision. However, to fully exploit the resolution it is crucial to account for the anisotropic emission characteristics of fluorescence dipole emitters with fixed orientation. In case of slight residual defocus, localization estimates may well be biased by tens of nanometers. We show here that astigmatic imaging in combination with information about the dipole orientation allows to extract the position of the dipole emitters without localization bias and down to a precision of 1 nm, thereby reaching the corresponding Cramér Rao bound. The approach is showcased with simulated data for various dipole orientations, and parameter settings realistic for real life experiments.


Subject(s)
Microscopy, Fluorescence/methods , Microscopy/methods , Algorithms , Biological Phenomena , Cold Temperature , Fluorescence , Likelihood Functions , Normal Distribution , Photons , Probability , Reproducibility of Results , Single Molecule Imaging , Temperature
10.
Front Neurol ; 12: 720516, 2021.
Article in English | MEDLINE | ID: mdl-34938252

ABSTRACT

Parkinson's disease is the second most common neurodegenerative disease worldwide reducing cognitive and motoric abilities of affected persons. Freezing of Gait (FoG) is one of the severe symptoms that is observed in the late stages of the disease and considerably impairs the mobility of the person and raises the risk of falls. Due to the pathology and heterogeneity of the Parkinsonian gait cycle, especially in the case of freezing episodes, the detection of the gait phases with wearables is challenging in Parkinson's disease. This is addressed by introducing a state-automaton-based algorithm for the detection of the foot's motion phases using a shoe-placed inertial sensor. Machine-learning-based methods are investigated to classify the actual motion phase as normal or FoG-affected and to predict the outcome for the next motion phase. For this purpose, spatio-temporal gait and signal parameters are determined from the segmented movement phases. In this context, inertial sensor fusion is applied to the foot's 3D acceleration and rate of turn. Support Vector Machine (SVM) and AdaBoost classifiers have been trained on the data of 16 Parkinson's patients who had shown FoG episodes during a clinical freezing-provoking assessment course. Two clinical experts rated the video-recorded trials and marked episodes with festination, shank trembling, shuffling, or akinesia. Motion phases inside such episodes were labeled as FoG-affected. The classifiers were evaluated using leave-one-patient-out cross-validation. No statistically significant differences could be observed between the different classifiers for FoG detection (p>0.05). An SVM model with 10 features of the actual and two preceding motion phases achieved the highest average performance with 88.5 ± 5.8% sensitivity, 83.3 ± 17.1% specificity, and 92.8 ± 5.9% Area Under the Curve (AUC). The performance of predicting the behavior of the next motion phase was significantly lower compared to the detection classifiers. No statistically significant differences were found between all prediction models. An SVM-predictor with features from the two preceding motion phases had with 81.6 ± 7.7% sensitivity, 70.3 ± 18.4% specificity, and 82.8 ± 7.1% AUC the best average performance. The developed methods enable motion-phase-based FoG detection and prediction and can be utilized for closed-loop systems that provide on-demand gait-phase-synchronous cueing to mitigate FoG symptoms and to prevent complete motoric blockades.

11.
ACS Nano ; 15(9): 15057-15068, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34463486

ABSTRACT

DNA origami structures provide flexible scaffolds for the organization of single biomolecules with nanometer precision. While they find increasing use for a variety of biological applications, the functionalization with proteins at defined stoichiometry, high yield, and under preservation of protein function remains challenging. In this study, we applied single molecule fluorescence microscopy in combination with a cell biological functional assay to systematically evaluate different strategies for the site-specific decoration of DNA origami structures, focusing on efficiency, stoichiometry, and protein functionality. Using an activating ligand of the T-cell receptor (TCR) as the protein of interest, we found that two commonly used methodologies underperformed with regard to stoichiometry and protein functionality. While strategies employing tetravalent wildtype streptavidin for coupling of a biotinylated TCR-ligand yielded mixed populations of DNA origami structures featuring up to three proteins, the use of divalent (dSAv) or DNA-conjugated monovalent streptavidin (mSAv) allowed for site-specific attachment of a single biotinylated TCR-ligand. The most straightforward decoration strategy, via covalent DNA conjugation, resulted in a 3-fold decrease in ligand potency, likely due to charge-mediated impairment of protein function. Replacing DNA with charge-neutral peptide nucleic acid (PNA) in a ligand conjugate emerged as the coupling strategy with the best overall performance in our study, as it produced the highest yield with no multivalent DNA origami structures and fully retained protein functionality. With our study we aim to provide guidelines for the stoichiometrically defined, site-specific functionalization of DNA origami structures with proteins of choice serving a wide range of biological applications.


Subject(s)
DNA , Nanostructures
12.
Front Oncol ; 11: 678824, 2021.
Article in English | MEDLINE | ID: mdl-34109125

ABSTRACT

Polyphosphoinositides (PPIns) and their modulating enzymes are involved in regulating many important cellular functions including proliferation, differentiation or gene expression, and their deregulation is involved in human diseases such as metabolic syndromes, neurodegenerative disorders and cancer, including Acute Myeloid Leukemia (AML). Given that PPIns regulating enzymes are highly druggable targets, several studies have recently highlighted the potential of targeting them in AML. For instance many inhibitors targeting the PI3K pathway are in various stages of clinical development and more recently other novel enzymes such as PIP4K2A have been implicated as AML targets. PPIns have distinct subcellular organelle profiles, in part driven by the specific localisation of enzymes that metabolise them. In particular, in the nucleus, PPIns are regulated in response to various extracellular and intracellular pathways and interact with specific nuclear proteins to control epigenetic cell state. While AML does not normally manifest with as many mutations as other cancers, it does appear in large part to be a disease of dysregulation of epigenetic signalling and many novel therapeutics are aimed at reprogramming AML cells toward a differentiated cell state or to one that is responsive to alternative successful but limited AML therapies such as ATRA. Here, we propose that by combining bioinformatic analysis with inhibition of PPIns pathways, especially within the nucleus, we might discover new combination therapies aimed at reprogramming transcriptional output to attenuate uncontrolled AML cell growth. Furthermore, we outline how different part of a PPIns signalling unit might be targeted to control selective outputs that might engender more specific and therefore less toxic inhibitory outcomes.

13.
Cancers (Basel) ; 13(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33916994

ABSTRACT

In recent years, onco-metabolites like D-2-hydroxyglutarate, which is produced in isocitrate dehydrogenase-mutated tumors, have gained increasing interest. Here, we report a metabolite in human specimens that is closely related to 2-hydroxyglutarate: the intramolecular ester of 2-hydroxyglutarate, 2-hydroxyglutarate-γ-lactone. Using 13C5-L-glutamine tracer analysis, we showed that 2-hydroxyglutarate is the endogenous precursor of 2-hydroxyglutarate-lactone and that there is a high exchange between these two metabolites. Lactone formation does not depend on mutated isocitrate dehydrogenase, but its formation is most probably linked to transport processes across the cell membrane and favored at low environmental pH. Furthermore, human macrophages showed not only striking differences in uptake of 2-hydroxyglutarate and its lactone but also in the enantiospecific hydrolysis of the latter. Consequently, 2-hydroxyglutarate-lactone may play a critical role in the modulation of the tumor microenvironment.

14.
Cancers (Basel) ; 13(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33924934

ABSTRACT

The transcription factor p53 functions as a critical tumor suppressor by orchestrating a plethora of cellular responses such as DNA repair, cell cycle arrest, cellular senescence, cell death, cell differentiation, and metabolism. In unstressed cells, p53 levels are kept low due to its polyubiquitination by the E3 ubiquitin ligase MDM2. In response to various stress signals, including DNA damage and aberrant growth signals, the interaction between p53 and MDM2 is blocked and p53 becomes stabilized, allowing p53 to regulate a diverse set of cellular responses mainly through the transactivation of its target genes. The outcome of p53 activation is controlled by its dynamics, its interactions with other proteins, and post-translational modifications. Due to its involvement in several tumor-suppressing pathways, p53 function is frequently impaired in human cancers. In colorectal cancer (CRC), the TP53 gene is mutated in 43% of tumors, and the remaining tumors often have compromised p53 functioning because of alterations in the genes encoding proteins involved in p53 regulation, such as ATM (13%) or DNA-PKcs (11%). TP53 mutations in CRC are usually missense mutations that impair wild-type p53 function (loss-of-function) and that even might provide neo-morphic (gain-of-function) activities such as promoting cancer cell stemness, cell proliferation, invasion, and metastasis, thereby promoting cancer progression. Although the first compounds targeting p53 are in clinical trials, a better understanding of wild-type and mutant p53 functions will likely pave the way for novel CRC therapies.

15.
Nucleic Acids Res ; 49(5): 2759-2776, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33591310

ABSTRACT

The DNA damage-responsive tumor suppressors p53 and HIPK2 are well established regulators of cell fate decision-making and regulate the cellular sensitivity to DNA-damaging drugs. Here, we identify Deleted in Azoospermia-associated protein 2 (DAZAP2), a small adaptor protein, as a novel regulator of HIPK2 and specifier of the DNA damage-induced p53 response. Knock-down or genetic deletion of DAZAP2 strongly potentiates cancer cell chemosensitivity both in cells and in vivo using a mouse tumour xenograft model. In unstressed cells, DAZAP2 stimulates HIPK2 polyubiquitination and degradation through interplay with the ubiquitin ligase SIAH1. Upon DNA damage, HIPK2 site-specifically phosphorylates DAZAP2, which terminates its HIPK2-degrading function and triggers its re-localization to the cell nucleus. Interestingly, nuclear DAZAP2 interacts with p53 and specifies target gene expression through modulating a defined subset of p53 target genes. Furthermore, our results suggest that DAZAP2 co-occupies p53 response elements to specify target gene expression. Collectively, our findings propose DAZAP2 as novel regulator of the DNA damage-induced p53 response that controls cancer cell chemosensitivity.


Subject(s)
Carrier Proteins/metabolism , DNA Damage , Protein Serine-Threonine Kinases/metabolism , RNA-Binding Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Nucleus/metabolism , Cells, Cultured , Gene Expression Regulation , Mice , Nuclear Proteins/metabolism , Promoter Regions, Genetic , RNA-Binding Proteins/physiology , Ubiquitin-Protein Ligases/metabolism
16.
PLoS One ; 16(1): e0245693, 2021.
Article in English | MEDLINE | ID: mdl-33471861

ABSTRACT

Single molecule localization microscopy (SMLM) has enormous potential for resolving subcellular structures below the diffraction limit of light microscopy: Localization precision in the low digit nanometer regime has been shown to be achievable. In order to record localization microscopy data, however, sample fixation is inevitable to prevent molecular motion during the rather long recording times of minutes up to hours. Eventually, it turns out that preservation of the sample's ultrastructure during fixation becomes the limiting factor. We propose here a workflow for data analysis, which is based on SMLM performed at cryogenic temperatures. Since molecular dipoles of the fluorophores are fixed at low temperatures, such an approach offers the possibility to use the orientation of the dipole as an additional information for image analysis. In particular, assignment of localizations to individual dye molecules becomes possible with high reliability. We quantitatively characterized the new approach based on the analysis of simulated oligomeric structures. Side lengths can be determined with a relative error of less than 1% for tetramers with a nominal side length of 5 nm, even if the assumed localization precision for single molecules is more than 2 nm.


Subject(s)
Image Processing, Computer-Assisted , Single Molecule Imaging , Reproducibility of Results , Workflow
17.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468643

ABSTRACT

T cells detect with their T cell antigen receptors (TCRs) the presence of rare agonist peptide/MHC complexes (pMHCs) on the surface of antigen-presenting cells (APCs). How extracellular ligand binding triggers intracellular signaling is poorly understood, yet spatial antigen arrangement on the APC surface has been suggested to be a critical factor. To examine this, we engineered a biomimetic interface based on laterally mobile functionalized DNA origami platforms, which allow for nanoscale control over ligand distances without interfering with the cell-intrinsic dynamics of receptor clustering. When targeting TCRs via stably binding monovalent antibody fragments, we found the minimum signaling unit promoting efficient T cell activation to consist of two antibody-ligated TCRs within a distance of 20 nm. In contrast, transiently engaging antigenic pMHCs stimulated T cells robustly as well-isolated entities. These results identify pairs of antibody-bound TCRs as minimal receptor entities for effective TCR triggering yet validate the exceptional stimulatory potency of single isolated pMHC molecules.


Subject(s)
Antigen-Presenting Cells/immunology , CD4-Positive T-Lymphocytes/immunology , DNA/immunology , Major Histocompatibility Complex/genetics , Receptors, Antigen, T-Cell/chemistry , Animals , Antigen-Presenting Cells/cytology , CD4-Positive T-Lymphocytes/cytology , DNA/chemistry , DNA/genetics , Gene Expression , Ligands , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Lymphocyte Activation , Mice , Nucleic Acid Conformation , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Primary Cell Culture , Protein Binding , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Signal Transduction , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/metabolism , Spleen/cytology , Spleen/immunology
18.
Nat Commun ; 11(1): 4993, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020470

ABSTRACT

Determining nanoscale protein distribution via Photoactivated Localization Microscopy (PALM) mandates precise knowledge of the applied fluorophore's blinking properties to counteract overcounting artifacts that distort the resulting biomolecular distributions. Here, we present a readily applicable methodology to determine, optimize and quantitatively account for the blinking behavior of any PALM-compatible fluorophore. Using a custom-designed platform, we reveal complex blinking of two photoswitchable fluorescence proteins (PS-CFP2 and mEOS3.2) and two photoactivatable organic fluorophores (PA Janelia Fluor 549 and Abberior CAGE 635) with blinking cycles on time scales of several seconds. Incorporating such detailed information in our simulation-based analysis package allows for robust evaluation of molecular clustering based on individually recorded single molecule localization maps.

19.
Sci Rep ; 10(1): 4230, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32144344

ABSTRACT

While single-molecule localization microscopy (SMLM) offers the invaluable prospect to visualize cellular structures below the diffraction limit of light microscopy, its potential has not yet been fully capitalized due to its inherent susceptibility to blinking artifacts. Particularly, overcounting of single molecule localizations has impeded a reliable and sensitive detection of biomolecular nanoclusters. Here we introduce a 2-Color Localization microscopy And Significance Testing Approach (2-CLASTA), providing a parameter-free statistical framework for the qualitative analysis of two-dimensional SMLM data via significance testing methods. 2-CLASTA yields p-values for the null hypothesis of random biomolecular distributions, independent of the blinking behavior of the chosen fluorescent labels. The method is parameter-free and does not require any additional measurements nor grouping of localizations. We validated the method both by computer simulations as well as experimentally, using protein concatemers as a mimicry of biomolecular clustering. As the new approach is not affected by overcounting artifacts, it is able to detect biomolecular clustering of various shapes at high sensitivity down to a level of dimers.

20.
Article in English | MEDLINE | ID: mdl-31241444

ABSTRACT

OBJECTIVE: The need of today's research is to develop successful and reliable diabetic animal models for understanding the disease susceptibility and pathogenesis. Enormous success of animal models had already been acclaimed for identifying key genetic and environmental factors like Idd loci and effects of microorganisms including the gut microbiota. Furthermore, animal models had also helped in identifying many therapeutic targets and strategies for immune-intervention. In spite of a quite success, we have acknowledged that many of the discovered immunotherapies are working on animals and did not have a significant impact on human. Number of animal models were developed in the past to accelerate drug discovery pipeline. However, due to poor initial screening and assessment on inequivalent animal models, the percentage of drug candidates who succeeded during clinical trials was very low. Therefore, it is essential to bridge this gap between pre-clinical research and clinical trial by validating the existing animal models for consistency. RESULTS AND CONCLUSION: In this review, we have discussed and evaluated the significance of animal models on behalf of published data on PUBMED. Amongst the most popular diabetic animal models, we have selected six animal models (e.g. BioBreeding rat, "LEW IDDM rat", "Nonobese Diabetic (NOD) mouse", "STZ RAT", "LEPR Mouse" and "Zucker Diabetic Fatty (ZDF) rat" and ranked them as per their published literature on PUBMED. Moreover, the vision and brief imagination for developing an advanced and robust diabetic model of 21st century was discussed with the theme of one miceone human concept including organs-on-chips.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Drug Evaluation, Preclinical/trends , Hypoglycemic Agents/pharmacology , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/genetics , Forecasting , Humans , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Mutant Strains , Rats, Inbred BB , Rats, Inbred Lew , Rats, Zucker , Species Specificity , Streptozocin
SELECTION OF CITATIONS
SEARCH DETAIL
...