Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 21(1): 383, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34416875

ABSTRACT

BACKGROUND: One of the major trends in angiosperm evolution was the shift from woody to herbaceous habit. However, reversals known as derived woodiness have also been reported in numerous, distantly related clades. Among theories evoked to explain the factors promoting the evolution of derived woodiness are moderate climate theory and cavitation theory. The first assumes that woody habit evolves in response to mild climate allowing for prolonged life span, which in turn leads to bigger and woodier bodies. The second sees woodiness as a result of natural selection for higher cavitation resistance in seasonally dry environments. Here, we compare climatic niches of woody and herbaceous, mostly southern African, umbellifers from the Lefebvrea clade to assess whether woody taxa in fact occur in markedly drier habitats. We also calibrate their phylogeny to estimate when derived woodiness evolved. Finally, we describe the wood anatomy of selected woody and herbaceous taxa to see if life forms are linked to any particular wood traits. RESULTS: The evolution of derived woodiness in chamaephytes and phanerophytes as well as the shifts to short-lived annual therophytes in the Lefebvrea clade took place at roughly the same time: in the Late Miocene during a trend of global climate aridification. Climatic niches of woody and herbaceous genera from the Cape Floristic Region overlap. There are only two genera with distinctly different climatic preferences: they are herbaceous and occur outside of the Cape Floristic Region. Therefore, studied herbs have an overall climatic niche wider than their woody cousins. Woody and herbaceous species do not differ in qualitative wood anatomy, which is more affected by stem architecture and, probably, reproductive strategy than by habit. CONCLUSIONS: Palaeodrought was likely a stimulus for the evolution of derived woodiness in the Lefebvrea clade, supporting the cavitation theory. The concurrent evolution of short-lived annuals withering before summer exemplifies an alternative solution to the same problem of drought-induced cavitation. Changes of the life form were most likely neither spurred nor precluded by any qualitative wood traits, which in turn are more affected by internode length and probably also reproductive strategy.


Subject(s)
Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Apiaceae/anatomy & histology , Apiaceae/growth & development , Apiaceae/genetics , Biological Evolution , Droughts , Wood/anatomy & histology , Genetic Variation , Genotype , Phylogeny
2.
Genome ; 61(11): 815-821, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30075091

ABSTRACT

Aizoaceae is the largest succulent plant family in the world, including in excess of 1800 species. Despite its richness, a large proportion of its taxa are listed as data deficient and as such, has been identified as the top priority for taxonomic research in South Africa. Limitations to accurate taxonomic identification of taxa in the family may be partly attributed to the degree of technical knowledge required to identify taxa in the Aizoaceae. DNA barcoding may provide an alternative method of identification; however, the suitability of commonly used gene regions has not been tested in the family. Here, we analyse variable and parsimony informative characters (PIC), as well as the barcoding gap, in commonly used plastid regions (atpB-rbcL, matK, psbA-trnH, psbJ-petA, rpl16, rps16, trnD-trnT, trnL-trnF, trnQ-rps16, and trnS-trnG) and the nuclear region ITS (for Aizooideae only) across two subfamilies and two expanded clades within the Aizoaceae. The relative percentage of PIC was much greater in subfamilies Aizooideae and Mesembryanthemoideae than in Ruschioideae. Although nrITS had the highest percentage of PIC, barcoding gap analyses identified neither ITS nor any chloroplast region as suitable for barcoding of the family. From the results, it is evident that novel barcoding regions need to be explored within the Aizoaceae.


Subject(s)
Aizoaceae/genetics , DNA Barcoding, Taxonomic , DNA, Plant , Aizoaceae/classification , Biodiversity , Genes, Plant , Phylogeography , Plastids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...