Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 159(1): 116-127, 2021 10.
Article in English | MEDLINE | ID: mdl-34320222

ABSTRACT

Methcathinone (MCAT) is a psychostimulant of abuse that can cause both persistent striatal dopaminergic and serotonergic, as well as hippocampal serotonergic, deficits. Evidence suggests that the rapid effects of stimulants that are structurally and mechanistically similar to MCAT on monoamine transporter function may contribute to the abuse liability and/or persistent monoaminergic deficits caused by these agents. Thus, effects of MCAT on 1) striatal dopamine (DA) transporter (DAT); and 2) striatal and hippocampal serotonin transporter (SERT) function, as determined in tissues from adult male rats, were assessed. As reported previously, a single administration of MCAT rapidly (within 1 hr) decreases striatal [3 H]DA uptake. Similarly, incubation of rat synaptosomes with MCAT at 37℃ (but not 4˚C) decreased striatal [3 H]DA uptake. Incubation with MCAT likewise decreased [3 H]5HT but not vesicular [3 H]DA uptake. MCAT incubation in vitro was without effect on [3 H]DA uptake in striatal synaptosomes prepared from MCAT-treated rats. The decrease in [3 H]DA uptake caused by MCAT incubation: (a) reflected a decrease in Vmax , with minimal change in Km , and (b) was attenuated by co-incubation with the cell-permeable calcium chelator, N,N'-[1,2-ethanediylbis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl]-1,1'-bis[(acetyloxy)methyl] ester-glycine (BAPTA-AM), as well as the non-selective protein kinase-C (PKC) inhibitors bisindolylmaleimide-1 (BIM-1) and 2-[1-3(Aminopropyl)indol-3-yl]-3(1-methyl-1H-indol-3-yl)maleimide (or Bisindolylmaleimide VIII; Ro-31-7549). Taken together, these results suggest that in vitro MCAT incubation may model important aspects of MCAT administration in vivo, and that calcium and PKC contribute to the in vitro effects of MCAT on DAT.


Subject(s)
Central Nervous System Stimulants/pharmacology , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopamine Plasma Membrane Transport Proteins/physiology , Propiophenones/pharmacology , Protein Kinase C/physiology , Animals , Corpus Striatum/drug effects , Corpus Striatum/physiology , Male , Rats , Rats, Sprague-Dawley , Synaptosomes/drug effects , Synaptosomes/physiology
2.
J Pharmacol Exp Ther ; 374(2): 273-282, 2020 08.
Article in English | MEDLINE | ID: mdl-32385092

ABSTRACT

Methylenedioxypyrovalerone (MDPV) is an abused synthetic cathinone, commonly referred to as a "bath salt." Because the dopamine (DA) transporter (DAT) and vesicular monoamine transporter-2 (VMAT-2) are key regulators of both the abuse and neurotoxic potential of structurally and behaviorally related agents, the impact of MDPV on these transporters was investigated. Results revealed that a single in vivo MDPV administration rapidly (within 1 hour) and reversibly increased both rat striatal DAT and VMAT-2 activity, as assessed via [3H]DA uptake in synaptosomes and synaptic vesicles, respectively, prepared from treated rats. There was no evidence of an MDPV-induced increase in plasmalemmal membrane DAT surface expression. Plasma concentrations of MDPV increased dose-dependently as assessed 1 hour after 2.5 and 5.0 mg/kg (s.c.) administration and returned to levels less than 10 ng/ml by 18 hours after 2.5 mg/kg (s.c.). Neither pretreatment with a D1 receptor (SCH23390), a D2 receptor (eticlopride), nor a nicotinic receptor (mecamylamine) antagonist attenuated the MDPV-induced increase in DAT activity. In contrast, eticlopride pretreatment attenuated both the MDPV-induced increase in VMAT-2-mediated DA uptake and an associated increase in cytoplasmic-associated vesicle VMAT-2 immunoreactivity. SCH23390 did not attenuate the MDPV-induced increase in VMAT-2 activity. Repeated MDPV injections did not cause persistent DAergic deficits, as assessed 7 to 8 days later. The impact of MDPV on striatal and hippocampal serotonergic assessments was minimal. Taken together, these data contribute to a growing pharmacological rubric for evaluating the ever-growing list of designer cathinone-related stimulants. The profile of MDPV compared with related psychostimulants is discussed. SIGNIFICANCE STATEMENT: Pharmacological characterization of the synthetic cathinone, 3,4-methylenedioxypyrovalerone (MDPV; commonly referred to as a "bath salt"), is critical for understanding the abuse liability and neurotoxic potential of this and related agents. Accordingly, the impact of MDPV on monoaminergic neurons is described and compared with that of related psychostimulants.


Subject(s)
Benzodioxoles/pharmacology , Central Nervous System Stimulants/pharmacology , Designer Drugs/pharmacology , Dopamine Plasma Membrane Transport Proteins/metabolism , Pyrrolidines/pharmacology , Substance-Related Disorders/metabolism , Vesicular Monoamine Transport Proteins/metabolism , Animals , Benzodioxoles/pharmacokinetics , Body Temperature/drug effects , Central Nervous System Stimulants/pharmacokinetics , Designer Drugs/pharmacokinetics , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Female , Male , Neostriatum/drug effects , Neostriatum/metabolism , Pyrrolidines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Synthetic Cathinone
3.
Pharmacol Biochem Behav ; 150-151: 94-99, 2016.
Article in English | MEDLINE | ID: mdl-27720801

ABSTRACT

Exercise is associated with lower rates of drug use in human populations and decreases drug self-administration in laboratory animals. Most of the existing literature examining the link between exercise and drug use has focused on chronic, long-term exercise, and very few studies have examined the link between exercise output (i.e., amount of exercise) and drug self-administration. The purpose of this study was to examine the effects of acute bouts of exercise on cocaine self-administration, and to determine whether these effects were dependent on exercise output and the time interval between exercise and drug self-administration. Female rats were trained to run in automated running wheels, implanted with intravenous catheters, and allowed to self-administer cocaine on a fixed ratio (FR1) schedule of reinforcement. Immediately prior to each test session, subjects engaged in acute bouts of exercise in which they ran for 0, 30, or 60min at 12m/min. Acute bouts of exercise before test sessions decreased cocaine self-administration in an output-dependent manner, with the greatest reduction in cocaine intake observed in the 60-min exercise condition. Exercise did not reduce cocaine self-administration when wheel running and test sessions were separated by 12h, and exercise did not reduce responding maintained by food or responding during a saline substitution test. These data indicate that acute bouts of exercise decrease cocaine self-administration in a time- and output-dependent manner. These results also add to a growing body of literature suggesting that physical activity may be an effective component of drug abuse treatment programs.


Subject(s)
Cocaine/administration & dosage , Physical Conditioning, Animal , Self Administration , Animals , Female , Motor Activity , Rats , Rats, Long-Evans , Reinforcement Schedule
4.
Exp Clin Psychopharmacol ; 24(4): 285-96, 2016 08.
Article in English | MEDLINE | ID: mdl-27454676

ABSTRACT

Social learning theories of drug use propose that drug use is influenced by the behavior of peers. We previously reported that cocaine self-administration under limited-access conditions can be either facilitated or inhibited by social contact, depending on the behavior of a peer. The purpose of this study was to determine whether social contact influences cocaine self-administration under conditions that are more representative of problematic patterns of drug use. Male rats were assigned to either isolated or pair-housed conditions in which a social partner either had access to cocaine or did not have access to cocaine. Pair-housed rats were tested in custom-built operant conditioning chambers that allowed both rats to be tested simultaneously in the same chamber. In Experiment 1, rats were tested for 14 consecutive days during daily 6-hr test sessions. In Experiment 2, different doses of cocaine were tested in 23-hr test sessions conducted every 3 days. All groups of rats escalated their cocaine intake in Experiment 1; however, pair-housed rats with a partner without access to cocaine had lower levels of intake throughout the 14 days of testing. In Experiment 2, pair-housed rats with a partner without access to cocaine had lower levels of cocaine intake than did rats with a partner with access to cocaine, and this effect was observed at all doses of cocaine tested. These data indicate that the behavior of a social partner (i.e., whether or not that partner is also self-administering cocaine) influences cocaine self-administration under conditions that model problematic patterns of drug use. (PsycINFO Database Record


Subject(s)
Cocaine/administration & dosage , Social Behavior , Animals , Behavior, Animal , Conditioning, Operant , Male , Random Allocation , Rats , Rats, Long-Evans , Reinforcement, Psychology , Self Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...