Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Tuberculosis (Edinb) ; 136: 102235, 2022 09.
Article in English | MEDLINE | ID: mdl-35952489

ABSTRACT

OBJECTIVES: Improved bovine tuberculosis (bTB) diagnostics with higher sensitivity and specificity are urgently required. A better understanding of the peripheral blood transcriptional response of Mycobacterium bovis-infected animals after bovine purified protein derivative (PPD-b) stimulation of whole blood-an important component of current bTB diagnostics-will provide new information for development of better diagnostics. METHODS: RNA sequencing (RNA-seq) was used to study the peripheral blood transcriptome after stimulation with PPD-b across four time points (-1 wk pre-infection, and +1 wk, +2 wk, and +10 wk post-infection) from a 14-week M. bovis infection time course experiment with ten age-matched Holstein-Friesian cattle. RESULTS: In vitro PPD-b stimulation of peripheral blood from M. bovis-infected and non-infected cattle elicited a strong transcriptional response. Comparison of PPD-b stimulated, and unstimulated samples revealed higher expression of genes encoding cytokine receptors, transcription factors, and interferon-inducible proteins. Lower expression was seen for genes encoding proteins involved in antimicrobial activity, C-type lectin receptors, inhibition of signal transduction, and genes encoding metal ion transporters. CONCLUSIONS: A transcriptional signature associated with the peripheral blood response to PPD-b stimulation consisting of 170 genes was identified exclusively in the post-infection time points. Therefore, this represents a panel of potential biomarkers of M. bovis infection.


Subject(s)
Anti-Infective Agents , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis, Bovine , Animals , Antigens, Bacterial , Biomarkers , Cattle , Interferons , Lectins, C-Type , Receptors, Cytokine , Transcription Factors , Transcriptome , Tuberculin , Tuberculosis, Bovine/diagnosis , Tuberculosis, Bovine/genetics
2.
Front Vet Sci ; 8: 662002, 2021.
Article in English | MEDLINE | ID: mdl-34124223

ABSTRACT

Bovine tuberculosis, caused by infection with members of the Mycobacterium tuberculosis complex, particularly Mycobacterium bovis, is a major endemic disease affecting cattle populations worldwide, despite the implementation of stringent surveillance and control programs in many countries. The development of high-throughput functional genomics technologies, including RNA sequencing, has enabled detailed analysis of the host transcriptome to M. bovis infection, particularly at the macrophage and peripheral blood level. In the present study, we have analysed the transcriptome of bovine whole peripheral blood samples collected at -1 week pre-infection and +1, +2, +6, +10, and +12 weeks post-infection time points. Differentially expressed genes were catalogued and evaluated at each post-infection time point relative to the -1 week pre-infection time point and used for the identification of putative candidate host transcriptional biomarkers for M. bovis infection. Differentially expressed gene sets were also used for examination of cellular pathways associated with the host response to M. bovis infection, construction of de novo gene interaction networks enriched for host differentially expressed genes, and time-series analyses to identify functionally important groups of genes displaying similar patterns of expression across the infection time course. A notable outcome of these analyses was identification of a 19-gene transcriptional biosignature of infection consisting of genes increased in expression across the time course from +1 week to +12 weeks post-infection.

3.
Front Genet ; 10: 927, 2019.
Article in English | MEDLINE | ID: mdl-31649720

ABSTRACT

The Galway sheep population is the only native Irish sheep breed and this livestock genetic resource is currently categorised as 'at-risk'. In the present study, comparative population genomics analyses of Galway sheep and other sheep populations of European origin were used to investigate the microevolution and recent genetic history of the breed. These analyses support the hypothesis that British Leicester sheep were used in the formation of the Galway. When compared to conventional and endangered breeds, the Galway breed was intermediate in effective population size, genomic inbreeding and runs of homozygosity. This indicates that, although the Galway breed is declining, it is still relatively genetically diverse and that conservation and management plans informed by genomic information may aid its recovery. The Galway breed also exhibited distinct genomic signatures of artificial or natural selection when compared to other breeds, which highlighted candidate genes that may be involved in production and health traits.

4.
Front Genet ; 9: 278, 2018.
Article in English | MEDLINE | ID: mdl-30154823

ABSTRACT

RNA-seq has emerged as an important technology for measuring gene expression in peripheral blood samples collected from humans and other vertebrate species. In particular, transcriptomics analyses of whole blood can be used to study immunobiology and develop novel biomarkers of infectious disease. However, an obstacle to these methods in many mammalian species is the presence of reticulocyte-derived globin mRNAs in large quantities, which can complicate RNA-seq library sequencing and impede detection of other mRNA transcripts. A range of supplementary procedures for targeted depletion of globin transcripts have, therefore, been developed to alleviate this problem. Here, we use comparative analyses of RNA-seq data sets generated from human, porcine, equine, and bovine peripheral blood to systematically assess the impact of globin mRNA on routine transcriptome profiling of whole blood in cattle and horses. The results of these analyses demonstrate that total RNA isolated from equine and bovine peripheral blood contains very low levels of globin mRNA transcripts, thereby negating the need for globin depletion and greatly simplifying blood-based transcriptomic studies in these two domestic species.

5.
BMC Genomics ; 19(1): 438, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29866048

ABSTRACT

BACKGROUND: Assisted reproductive technologies (ART) are widely used to treat fertility issues in humans and for the production of embryos in mammalian livestock. The use of these techniques, however, is not without consequence as they are often associated with inauspicious pre- and postnatal outcomes including premature birth, intrauterine growth restriction and increased incidence of epigenetic disorders in human and large offspring syndrome in cattle. Here, global DNA methylation profiles in the trophectoderm and embryonic discs of in vitro produced (IVP), superovulation-derived (SOV) and unstimulated, synchronised control day 17 bovine conceptuses (herein referred to as AI) were interrogated using the EmbryoGENE DNA Methylation Array (EDMA). Pyrosequencing was used to validate four loci identified as differentially methylated on the array and to assess the differentially methylated regions (DMRs) of six imprinted genes in these conceptuses. The impact of embryo-production induced DNA methylation aberrations was determined using Ingenuity Pathway Analysis, shedding light on the potential functional consequences of these differences. RESULTS: Of the total number of differentially methylated loci identified (3140) 77.3 and 22.7% were attributable to SOV and IVP, respectively. Differential methylation was most prominent at intragenic sequences within the trophectoderm of IVP and SOV-derived conceptuses, almost a third (30.8%) of the differentially methylated loci mapped to intragenic regions. Very few differentially methylated loci were detected in embryonic discs (ED); 0.16 and 4.9% of the differentially methylated loci were located in the ED of SOV-derived and IVP conceptuses, respectively. The overall effects of SOV and IVP on the direction of methylation changes were associated with increased methylation; 70.6% of the differentially methylated loci in SOV-derived conceptuses and 57.9% of the loci in IVP-derived conceptuses were more methylated compared to AI-conceptuses. Ontology analysis of probes associated with intragenic sequences suggests enrichment for terms associated with cancer, cell morphology and growth. CONCLUSION: By examining (1) the effects of superovulation and (2) the effects of an in vitro system (oocyte maturation, fertilisation and embryo culture) we have identified that the assisted reproduction process of superovulation alone has the largest impact on the DNA methylome of subsequent embryos.


Subject(s)
Cattle/embryology , Cattle/genetics , DNA Methylation , Reproductive Techniques, Assisted , Trophoblasts/metabolism , Animals , Genetic Loci/genetics
6.
Front Genet ; 9: 51, 2018.
Article in English | MEDLINE | ID: mdl-29520297

ABSTRACT

Kerry cattle are an endangered landrace heritage breed of cultural importance to Ireland. In the present study we have used genome-wide SNP array data to evaluate genomic diversity within the Kerry population and between Kerry cattle and other European breeds. Patterns of genetic differentiation and gene flow among breeds using phylogenetic trees with ancestry graphs highlighted historical gene flow from the British Shorthorn breed into the ancestral population of modern Kerry cattle. Principal component analysis (PCA) and genetic clustering emphasised the genetic distinctiveness of Kerry cattle relative to comparator British and European cattle breeds. Modelling of genetic effective population size (Ne) revealed a demographic trend of diminishing Ne over time and that recent estimated Ne values for the Kerry breed may be less than the threshold for sustainable genetic conservation. In addition, analysis of genome-wide autozygosity (FROH) showed that genomic inbreeding has increased significantly during the 20 years between 1992 and 2012. Finally, signatures of selection revealed genomic regions subject to natural and artificial selection as Kerry cattle adapted to the climate, physical geography and agro-ecology of southwest Ireland.

7.
Microb Genom ; 4(3)2018 03.
Article in English | MEDLINE | ID: mdl-29557774

ABSTRACT

Members of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC pathogens is their high degree of genetic identity yet distinct host tropism. Notably, while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that host preference amongst MTBC members has a basis in host innate immune responses. To explore MTBC host tropism, we present in-depth profiling of the MTBC reference strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional and the translational level via RNA-sequencing and SWATH MS. Furthermore, a bovine alveolar macrophage infection time course model was used to investigate the shared and divergent host transcriptomic response to infection with M. tuberculosis H37Rv or M. bovis AF2122/97. Significant differential expression of virulence-associated pathways between the two bacilli was revealed, including the ESX-1 secretion system. A divergent transcriptional response was observed between M. tuberculosis H37Rv and M. bovis AF2122/97 infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways at 48 h post-infection, and highlights a distinct engagement of M. bovis with the bovine innate immune system. The work presented here therefore provides a basis for the identification of host innate immune mechanisms subverted by virulent host-adapted mycobacteria to promote their survival during the early stages of infection.


Subject(s)
Immunity, Innate , Macrophages, Alveolar , Mycobacterium bovis , Mycobacterium tuberculosis , Transcriptome , Tuberculosis, Bovine , Tuberculosis, Pulmonary , Animals , Cattle , Humans , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/microbiology , Mycobacterium bovis/genetics , Mycobacterium bovis/immunology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Proteomics , Tuberculosis, Bovine/genetics , Tuberculosis, Bovine/immunology , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology
8.
Front Genet ; 8: 3, 2017.
Article in English | MEDLINE | ID: mdl-28197171

ABSTRACT

The domestication of cattle from the now-extinct wild aurochs (Bos primigenius) involved selection for physiological and behavioral traits, with underlying genetic factors that remain largely unknown. Non-coding microRNAs have emerged as key regulators of the spatio-temporal expression of target genes controlling mammalian growth and development, including in livestock species. During the domestication process, selection of mutational changes in miRNAs and/or miRNA binding sites could have provided a mechanism to generate some of the traits that differentiate domesticated cattle from wild aurochs. To investigate this, we analyzed the open reading frame DNA sequence of 19,994 orthologous protein-coding gene pairs from extant Bos taurus genomes and a single extinct B. primigenius genome. We identified miRNA binding site polymorphisms in the 3' UTRs of 1,620 of these orthologous genes. These 1,620 genes with altered miRNA binding sites between the B. taurus and B. primigenius lineages represent candidate domestication genes. Using a novel Score Site ratio metric we have ranked these miRNA-regulated genes according to the extent of divergence between miRNA binding site presence, frequency and copy number between the orthologous genes from B. taurus and B. primigenius. This provides an unbiased approach to identify cattle genes that have undergone the most changes in miRNA binding (i.e., regulation) between the wild aurochs and modern-day cattle breeds. In addition, we demonstrate that these 1,620 candidate domestication genes are enriched for roles in pigmentation, fertility, neurobiology, metabolism, immunity and production traits (including milk quality and feed efficiency). Our findings suggest that directional selection of miRNA regulatory variants was important in the domestication and subsequent artificial selection that gave rise to modern taurine cattle.

9.
BMC Bioinformatics ; 17: 126, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26968614

ABSTRACT

BACKGROUND: Identification of gene expression profiles that differentiate experimental groups is critical for discovery and analysis of key molecular pathways and also for selection of robust diagnostic or prognostic biomarkers. While integration of differential expression statistics has been used to refine gene set enrichment analyses, such approaches are typically limited to single gene lists resulting from simple two-group comparisons or time-series analyses. In contrast, functional class scoring and machine learning approaches provide powerful alternative methods to leverage molecular measurements for pathway analyses, and to compare continuous and multi-level categorical factors. RESULTS: We introduce GOexpress, a software package for scoring and summarising the capacity of gene ontology features to simultaneously classify samples from multiple experimental groups. GOexpress integrates normalised gene expression data (e.g., from microarray and RNA-seq experiments) and phenotypic information of individual samples with gene ontology annotations to derive a ranking of genes and gene ontology terms using a supervised learning approach. The default random forest algorithm allows interactions between all experimental factors, and competitive scoring of expressed genes to evaluate their relative importance in classifying predefined groups of samples. CONCLUSIONS: GOexpress enables rapid identification and visualisation of ontology-related gene panels that robustly classify groups of samples and supports both categorical (e.g., infection status, treatment) and continuous (e.g., time-series, drug concentrations) experimental factors. The use of standard Bioconductor extension packages and publicly available gene ontology annotations facilitates straightforward integration of GOexpress within existing computational biology pipelines.


Subject(s)
Computational Biology/methods , Gene Ontology , Software , Supervised Machine Learning , Transcriptome , RNA, Messenger
10.
Genome Biol ; 16: 234, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26498365

ABSTRACT

BACKGROUND: Domestication of the now-extinct wild aurochs, Bos primigenius, gave rise to the two major domestic extant cattle taxa, B. taurus and B. indicus. While previous genetic studies have shed some light on the evolutionary relationships between European aurochs and modern cattle, important questions remain unanswered, including the phylogenetic status of aurochs, whether gene flow from aurochs into early domestic populations occurred, and which genomic regions were subject to selection processes during and after domestication. Here, we address these questions using whole-genome sequencing data generated from an approximately 6,750-year-old British aurochs bone and genome sequence data from 81 additional cattle plus genome-wide single nucleotide polymorphism data from a diverse panel of 1,225 modern animals. RESULTS: Phylogenomic analyses place the aurochs as a distinct outgroup to the domestic B. taurus lineage, supporting the predominant Near Eastern origin of European cattle. Conversely, traditional British and Irish breeds share more genetic variants with this aurochs specimen than other European populations, supporting localized gene flow from aurochs into the ancestors of modern British and Irish cattle, perhaps through purposeful restocking by early herders in Britain. Finally, the functions of genes showing evidence for positive selection in B. taurus are enriched for neurobiology, growth, metabolism and immunobiology, suggesting that these biological processes have been important in the domestication of cattle. CONCLUSIONS: This work provides important new information regarding the origins and functional evolution of modern cattle, revealing that the interface between early European domestic populations and wild aurochs was significantly more complex than previously thought.


Subject(s)
Cattle/genetics , Evolution, Molecular , Animals , England , Europe , Extinction, Biological , Genetic Variation , Genomics , Phylogeography , Ruminants/classification , Ruminants/genetics , Sequence Analysis, DNA
11.
Sci Rep ; 5: 13629, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26346536

ABSTRACT

Mycobacterium bovis, the agent of bovine tuberculosis, causes an estimated $3 billion annual losses to global agriculture due, in part, to the limitations of current diagnostics. Development of next-generation diagnostics requires a greater understanding of the interaction between the pathogen and the bovine host. Therefore, to explore the early response of the alveolar macrophage to infection, we report the first application of RNA-sequencing to define, in exquisite detail, the transcriptomes of M. bovis-infected and non-infected alveolar macrophages from ten calves at 2, 6, 24 and 48 hours post-infection. Differentially expressed sense genes were detected at these time points that revealed enrichment of innate immune signalling functions, and transcriptional suppression of host defence mechanisms (e.g., lysosome maturation). We also detected differentially expressed natural antisense transcripts, which may play a role in subverting innate immune mechanisms following infection. Furthermore, we report differential expression of novel bovine genes, some of which have immune-related functions based on orthology with human proteins. This is the first in-depth transcriptomics investigation of the alveolar macrophage response to the early stages of M. bovis infection and reveals complex patterns of gene expression and regulation that underlie the immunomodulatory mechanisms used by M. bovis to evade host defence mechanisms.


Subject(s)
Host-Pathogen Interactions/genetics , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/microbiology , Mycobacterium bovis/immunology , Tuberculosis, Bovine/genetics , Tuberculosis, Bovine/immunology , Animals , Cats , Cattle , Computational Biology/methods , DEAD-box RNA Helicases/metabolism , Gene Expression Profiling , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions/immunology , Lysosomes/metabolism , Macrophages, Alveolar/immunology , Male , Molecular Sequence Annotation , Receptors, Cytoplasmic and Nuclear/metabolism , Reproducibility of Results , Signal Transduction , Transcriptome , Tuberculosis, Bovine/microbiology
12.
Front Genet ; 6: 156, 2015.
Article in English | MEDLINE | ID: mdl-25964798

ABSTRACT

Monoallelically expressed genes that exert their phenotypic effect in a parent-of-origin specific manner are considered to be subject to genomic imprinting, the most well understood form of epigenetic regulation of gene expression in mammals. The observed differences in allele specific gene expression for imprinted genes are not attributable to differences in DNA sequence information, but to specific chemical modifications of DNA and chromatin proteins. Since the discovery of genomic imprinting some three decades ago, over 100 imprinted mammalian genes have been identified and considerable advances have been made in uncovering the molecular mechanisms regulating imprinted gene expression. While most genomic imprinting studies have focused on mouse models and human biomedical disorders, recent work has highlighted the contributions of imprinted genes to complex trait variation in domestic livestock species. Consequently, greater understanding of genomic imprinting and its effect on agriculturally important traits is predicted to have major implications for the future of animal breeding and husbandry. In this review, we discuss genomic imprinting in mammals with particular emphasis on domestic livestock species and consider how this information can be used in animal breeding research and genetic improvement programs.

13.
BMC Dev Biol ; 15: 13, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25881176

ABSTRACT

BACKGROUND: In mammals, maternal differentially methylated regions (DMRs) acquire DNA methylation during the postnatal growth stage of oogenesis, with paternal DMRs acquiring DNA methylation in the perinatal prospermatagonia. Following fusion of the male and female gametes, it is widely accepted that murine DNA methylation marks at the DMRs of imprinted genes are stable through embryogenesis and early development, until they are reprogrammed in primordial germ cells. However, the DNA methylation dynamics at DMRs of bovine imprinted genes during early stages of development remains largely unknown. The objective of this investigation was to analyse the methylation dynamics at imprinted gene DMRs during bovine embryo development, from blastocyst stage until implantation. RESULTS: To this end, pyrosequencing technology was used to quantify DNA methylation at DMR-associated CpG dinucleotides of six imprinted bovine genes (SNRPN, MEST, IGF2R, PLAGL1, PEG10 and H19) using bisulfite-modified genomic DNA isolated from individual blastocysts (Day 7); ovoid embryos (Day 14); filamentous embryos (Day 17) and implanting conceptuses (Day 25). For all genes, the degree of DNA methylation was most variable in Day 7 blastocysts compared to later developmental stages (P < 0.05). Furthermore, mining of RNA-seq transcriptomic data and western blot analysis revealed a specific window of expression of DNA methylation machinery genes (including DNMT3A, DNMT3B, TRIM28/KAP1 and DNMT1) and proteins (DNMT3A, DNMT3A2 and DNMT3B) by bovine embryos coincident with imprint stabilization. CONCLUSION: The findings of this study suggest that the DNA methylation status of bovine DMRs might be variable during the early stages of embryonic development, possibly requiring an active period of imprint stabilization.


Subject(s)
Blastocyst , DNA Methylation , Embryonic Development/genetics , Genomic Imprinting , Animals , Cattle
14.
Front Immunol ; 6: 23, 2015.
Article in English | MEDLINE | ID: mdl-25699042

ABSTRACT

Johne's disease, caused by infection with Mycobacterium avium subsp. paratuberculosis, (MAP), is a chronic intestinal disease of ruminants with serious economic consequences for cattle production in the United States and elsewhere. During infection, MAP bacilli are phagocytosed and subvert host macrophage processes, resulting in subclinical infections that can lead to immunopathology and dissemination of disease. Analysis of the host macrophage transcriptome during infection can therefore shed light on the molecular mechanisms and host-pathogen interplay associated with Johne's disease. Here, we describe results of an in vitro study of the bovine monocyte-derived macrophage (MDM) transcriptome response during MAP infection using RNA-seq. MDM were obtained from seven age- and sex-matched Holstein-Friesian cattle and were infected with MAP across a 6-h infection time course with non-infected controls. We observed 245 and 574 differentially expressed (DE) genes in MAP-infected versus non-infected control samples (adjusted P value ≤0.05) at 2 and 6 h post-infection, respectively. Functional analyses of these DE genes, including biological pathway enrichment, highlighted potential functional roles for genes that have not been previously described in the host response to infection with MAP bacilli. In addition, differential expression of pro- and anti-inflammatory cytokine genes, such as those associated with the IL-10 signaling pathway, and other immune-related genes that encode proteins involved in the bovine macrophage response to MAP infection emphasize the balance between protective host immunity and bacilli survival and proliferation. Systematic comparisons of RNA-seq gene expression results with Affymetrix(®) microarray data generated from the same experimental samples also demonstrated that RNA-seq represents a superior technology for studying host transcriptional responses to intracellular infection.

15.
Tuberculosis (Edinb) ; 95(1): 60-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25692199

ABSTRACT

Mycobacterium bovis, the causative agent of bovine tuberculosis, a major problem for global agriculture, spreads via an airborne route and is taken up by alveolar macrophages (AM) in the lung. Here, we describe the first next-generation sequencing (RNA-seq) approach to temporally profile miRNA expression in primary bovine AMs post-infection with M. bovis. One, six, and forty miRNAs were identified as significantly differentially expressed at 2, 24 and 48 h post-infection, respectively. The differential expression of three miRNAs (bta-miR-142-5p, bta-miR-146a, and bta-miR-423-3p) was confirmed by RT-qPCR. Pathway analysis of the predicted mRNA targets of differentially expressed miRNAs suggests that these miRNAs preferentially target several pathways that are functionally relevant for mycobacterial pathogenesis, including endocytosis and lysosome trafficking, IL-1 signalling and the TGF-ß pathway. Over-expression studies using a bovine macrophage cell-line (Bomac) reveal the targeting of two key genes in the innate immune response to M. bovis, IL-1 receptor-associated kinase 1 (IRAK1) and TGF-ß receptor 2 (TGFBR2), by miR-146. Taken together, our study suggests that miRNAs play a key role in tuning the complex interplay between M. bovis survival strategies and the host immune response.


Subject(s)
Macrophages, Alveolar/immunology , MicroRNAs/physiology , Mycobacterium bovis/immunology , Tuberculosis, Bovine/immunology , Tuberculosis, Pulmonary/immunology , Animals , Cattle , Cells, Cultured , Down-Regulation , Endocytosis/immunology , Gene Expression/genetics , Gene Expression/immunology , Gene Expression Profiling/methods , Immunity, Innate/immunology , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Lysosomes/immunology , Male , MicroRNAs/genetics , MicroRNAs/immunology , RNA, Bacterial/genetics , RNA, Bacterial/immunology , Real-Time Polymerase Chain Reaction/methods , Sequence Analysis, RNA/methods , Transfection/methods , Transforming Growth Factor beta2/antagonists & inhibitors , Up-Regulation
16.
J Immunol ; 193(12): 6016-30, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25398326

ABSTRACT

Under selection pressure from pathogens, variable NK cell receptors that recognize polymorphic MHC class I evolved convergently in different species of placental mammal. Unexpectedly, diversified killer cell Ig-like receptors (KIRs) are shared by simian primates, including humans, and cattle, but not by other species. Whereas much is known of human KIR genetics and genomics, knowledge of cattle KIR is limited to nine cDNA sequences. To facilitate comparison of the cattle and human KIR gene families, we determined the genomic location, structure, and sequence of two cattle KIR haplotypes and defined KIR sequences of aurochs, the extinct wild ancestor of domestic cattle. Larger than its human counterpart, the cattle KIR locus evolved through successive duplications of a block containing ancestral KIR3DL and KIR3DX genes that existed before placental mammals. Comparison of two cattle KIR haplotypes and aurochs KIR show the KIR are polymorphic and the gene organization and content appear conserved. Of 18 genes, 8 are functional and 10 were inactivated by point mutation. Selective inactivation of KIR3DL and activating receptor genes leaves a functional cohort of one inhibitory KIR3DL, one activating KIR3DX, and six inhibitory KIR3DX. Functional KIR diversity evolved from KIR3DX in cattle and from KIR3DL in simian primates. Although independently evolved, cattle and human KIR gene families share important function-related properties, indicating that cattle KIR are NK cell receptors for cattle MHC class I. Combinations of KIR and MHC class I are the major genetic factors associated with human disease and merit investigation in cattle.


Subject(s)
Multigene Family , Receptors, KIR/genetics , Animals , Cattle , Chromosome Mapping , Chromosomes, Mammalian , Cloning, Molecular , Evolution, Molecular , Gene Library , Genetic Loci , Genome , Haplotypes , Humans , Immunoglobulins/genetics , Molecular Sequence Data , Phenotype , Phylogeny , Receptors, IgG/metabolism , Receptors, KIR/classification , Receptors, KIR/metabolism , Receptors, Natural Killer Cell/metabolism , Sequence Analysis, DNA , Signal Transduction , Telomere
17.
Front Immunol ; 5: 536, 2014.
Article in English | MEDLINE | ID: mdl-25414700

ABSTRACT

Mycobacterial infections are major causes of morbidity and mortality in cattle and are also potential zoonotic agents with implications for human health. Despite the implementation of comprehensive animal surveillance programs, many mycobacterial diseases have remained recalcitrant to eradication in several industrialized countries. Two major mycobacterial pathogens of cattle are Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis (MAP), the causative agents of bovine tuberculosis (BTB) and Johne's disease (JD), respectively. BTB is a chronic, granulomatous disease of the respiratory tract that is spread via aerosol transmission, while JD is a chronic granulomatous disease of the intestines that is transmitted via the fecal-oral route. Although these diseases exhibit differential tissue tropism and distinct complex etiologies, both M. bovis and MAP infect, reside, and replicate in host macrophages - the key host innate immune cell that encounters mycobacterial pathogens after initial exposure and mediates the subsequent immune response. The persistence of M. bovis and MAP in macrophages relies on a diverse series of immunomodulatory mechanisms, including the inhibition of phagosome maturation and apoptosis, generation of cytokine-induced necrosis enabling dissemination of infection through the host, local pathology, and ultimately shedding of the pathogen. Here, we review the bovine macrophage response to infection with M. bovis and MAP. In particular, we describe how recent advances in functional genomics are shedding light on the host macrophage-pathogen interactions that underlie different mycobacterial diseases. To illustrate this, we present new analyses of previously published bovine macrophage transcriptomics data following in vitro infection with virulent M. bovis, the attenuated vaccine strain M. bovis BCG, and MAP, and discuss our findings with respect to the differing etiologies of BTB and JD.

18.
Front Immunol ; 5: 422, 2014.
Article in English | MEDLINE | ID: mdl-25324841

ABSTRACT

Mycobacterium bovis is an intracellular pathogen that causes tuberculosis in cattle. Following infection, the pathogen resides and persists inside host macrophages by subverting host immune responses via a diverse range of mechanisms. Here, a high-density bovine microarray platform was used to examine the bovine monocyte-derived macrophage transcriptome response to M. bovis infection relative to infection with the attenuated vaccine strain, M. bovis Bacille Calmette-Guérin. Differentially expressed genes were identified (adjusted P-value ≤0.01) and interaction networks generated across an infection time course of 2, 6, and 24 h. The largest number of biological interactions was observed in the 24-h network, which exhibited scale-free network properties. The 24-h network featured a small number of key hub and bottleneck gene nodes, including IKBKE, MYC, NFKB1, and EGR1 that differentiated the macrophage response to virulent and attenuated M. bovis strains, possibly via the modulation of host cell death mechanisms. These hub and bottleneck genes represent possible targets for immuno-modulation of host macrophages by virulent mycobacterial species that enable their survival within a hostile environment.

19.
Front Immunol ; 5: 396, 2014.
Article in English | MEDLINE | ID: mdl-25206354

ABSTRACT

Bovine tuberculosis, caused by infection with Mycobacterium bovis, is a major endemic disease affecting cattle populations worldwide, despite the implementation of stringent surveillance and control programs in many countries. The development of high-throughput functional genomics technologies, including gene expression microarrays and RNA-sequencing (RNA-seq), has enabled detailed analysis of the host transcriptome to M. bovis infection, particularly at the macrophage and peripheral blood level. In the present study, we have analyzed the peripheral blood leukocyte (PBL) transcriptome of eight natural M. bovis-infected and eight age- and sex-matched non-infected control Holstein-Friesian animals using RNA-seq. In addition, we compared gene expression profiles generated using RNA-seq with those previously generated using the high-density Affymetrix(®) GeneChip(®) Bovine Genome Array platform from the same PBL-extracted RNA. A total of 3,250 differentially expressed (DE) annotated genes were detected in the M. bovis-infected samples relative to the controls (adjusted P-value ≤0.05), with the number of genes displaying decreased relative expression (1,671) exceeding those with increased relative expression (1,579). Ingenuity(®) Systems Pathway Analysis (IPA) of all DE genes revealed enrichment for genes with immune function. Notably, transcriptional suppression was observed among several of the top-ranking canonical pathways including Leukocyte Extravasation Signaling. Comparative platform analysis demonstrated that RNA-seq detected a larger number of annotated DE genes (3,250) relative to the microarray (1,398), of which 917 genes were common to both technologies and displayed the same direction of expression. Finally, we show that RNA-seq had an increased dynamic range compared to the microarray for estimating differential gene expression.

20.
Tuberculosis (Edinb) ; 94(4): 441-50, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24882682

ABSTRACT

Despite sharing >99.9% genome sequence similarity at the nucleotide level, Mycobacterium tuberculosis and Mycobacterium bovis-the causative agents of human and bovine tuberculosis, respectively-exhibit distinct host preferences. M. bovis can cause disease in both cattle and humans yet rarely transmits between immuno-competent human hosts, while M. tuberculosis is a highly successful pathogen of humans that does not sustain in animal populations. Based on the key role played by alveolar macrophages during mycobacterial infection, we hypothesised that the immunological and pathological differences observed in cattle infected with virulent M. bovis and M. tuberculosis may have a basis in innate immune mechanisms; these differences, in turn, would be reflected at the macrophage mRNA and protein level. To investigate this, we have analysed the transcriptional profile of innate immune genes in bovine alveolar macrophages following 24 and 48 h infection with the genome-sequenced strains, M. bovis AF2122/97 and M. tuberculosis H37Rv. A bespoke multiplex ELISA was also used to quantify corresponding cytokine secretion in supernatants from the same infected alveolar macrophages. All cytokines showed similar significant patterns of expression (i.e., up- or down-regulation) at both the mRNA and protein levels in infected macrophages relative to parallel non-infected controls at the two time points (P ≤ 0.05). However, significant upregulation and downregulation of several innate immune genes-including TLR2, FOS, PIK3IP1, CCL4, IL1B, IL6 and TNF-and the CCL-4 protein was observed in the M. bovis-infected macrophages relative to the M. tuberculosis-infected macrophages 48 h post-infection (P ≤ 0.05). These results support the hypothesis that the divergent virulence of M. bovis and M. tuberculosis in cattle has a basis in innate immune mechanisms, which may contribute to host preference within the M. tuberculosis complex of strains.


Subject(s)
Cytokines/biosynthesis , Macrophages, Alveolar/immunology , Mycobacterium bovis/pathogenicity , Mycobacterium tuberculosis/pathogenicity , Tuberculosis, Bovine/immunology , Animals , Cattle , Cells, Cultured , Cytokines/genetics , Gene Expression Profiling/methods , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Macrophages, Alveolar/microbiology , Male , Mycobacterium bovis/immunology , Mycobacterium tuberculosis/immunology , RNA, Messenger/genetics , Tuberculosis, Bovine/genetics , Tuberculosis, Bovine/microbiology , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...