Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200124

ABSTRACT

Identifying and characterizing cold responsive genes in Fragaria vesca associated with or responsible for low temperature tolerance is a vital part of strawberry cultivar development. In this study we have investigated the transcript levels of eight genes, two dehydrin genes, three putative ABA-regulated genes, two cold-inducible CBF genes and the alcohol dehydrogenase gene, extracted from leaf and crown tissues of three F. vesca genotypes that vary in cold tolerance. Transcript levels of the CBF/DREB1 transcription factor FvCBF1E exhibited stronger cold up-regulation in comparison to FvCBF1B.1 in all genotypes. Transcripts of FvADH were highly up-regulated in both crown and leaf tissues from all three genotypes. In the 'ALTA' genotype, FvADH transcripts were significantly higher in leaf than crown tissues and more than 10 to 20-fold greater than in the less cold-tolerant 'NCGR1363' and 'FDP817' genotypes. FvGEM, containing the conserved ABRE promoter element, transcript was found to be cold-regulated in crowns. Direct comparison of the kinetics of transcript and protein accumulation of dehydrins was scrutinized. In all genotypes and organs, the changes of XERO2 transcript levels generally preceded protein changes, while levels of COR47 protein accumulation preceded the increases in COR47 RNA in 'ALTA' crowns.


Subject(s)
Adaptation, Physiological , Cold Temperature , Fragaria/growth & development , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Fragaria/genetics , Fragaria/metabolism , Genotype
2.
Molecules ; 22(2)2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28208739

ABSTRACT

Flavonoids represent a typical secondary metabolite class present in cruciferous vegetables. Their potential as natural antioxidants has raised considerable scientific interest. Impacts on the human body after food consumption as well as their effect as pharmaceutical supplements are therefore under investigation. Their numerous physiological functions make them a promising tool for breeding purposes. General methods for flavonoid analysis are well established, though new compounds are still being identified. However, differences in environmental circumstances of the studies and analytical methods impede comparability of quantification results. To promote future investigations on flavonoids in cruciferous plants we provide a checklist on best-practice in flavonoid research and specific flavonoid derivatives that are valuable targets for further research, choosing a representative species of scientific interest, Brassica oleracea.


Subject(s)
Brassica/chemistry , Brassica/metabolism , Flavonoids/chemistry , Flavonoids/metabolism , Biosynthetic Pathways , Phytochemicals/chemistry , Phytochemicals/metabolism , Secondary Metabolism
3.
J Agric Food Chem ; 64(16): 3251-7, 2016 Apr 27.
Article in English | MEDLINE | ID: mdl-27045759

ABSTRACT

Carotenoids are best known as a source of natural antioxidants. Physiologically, carotenoids are part of the photoprotection in plants as they act as scavengers of reactive oxygen species (ROS). An important source of carotenoids in European food is Brassica oleracea. Focusing on the most abundant carotenoids, we estimated the contents of ß-carotene, (9Z)-neoxanthin, zeaxanthin, and lutein as well as those of chlorophylls a and b to assess their variability in Brassica oleracea var. sabellica. Our analyses included more than 30 cultivars categorized in five distinct sets grouped according to morphological characteristics or geographical origin. Our results demonstrated specific carotenoid patterns characteristic for American, Italian, and red-colored kale cultivars. Moreover, we demonstrated a tendency of high zeaxanthin proportions under traditional harvest conditions, which accord to low-temperature regimes. We also compared the carotenoid patterns of self-generated hybrid lines. Corresponding findings indicated that crossbreeding has a high potential for carotenoid content optimization in kale.


Subject(s)
Brassica/chemistry , Carotenoids/analysis , Brassica/classification , Brassica/metabolism , Reactive Oxygen Species/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...