Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Test Mol Biomarkers ; 14(2): 225-31, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20187762

ABSTRACT

Charcot Marie Tooth (CMT) syndrome is the most common hereditary peripheral neuropathy, with an incidence of about 1 in 2500. The subtype 1A (CMT1A) is caused by a tandem duplication of a 1.5-Mb region encompassing the PMP22 gene. Conventional short tandem repeat (STR) analysis can reveal this imbalance if a triallelic pattern, defining with certainty the presence of duplication, is present. In case of duplication with a biallelic pattern, it can only indicate a semiquantitative dosage of the fluorescence intensity ratio of the two fragments. In this study we developed a quantitative fluorescence-PCR using seven highly informative STRs within the CMT1A critical region that successfully disclosed or excluded the presence of the pathogenic imbalance in a cohort of 60 samples including 40 DNAs from samples with the CMT1A duplication previously characterized with two different molecular approaches, and 20 diagnostic samples from 10 members of a five-generation pedigree segregating CMT1A, 8 unrelated cases and 2 prenatal samples. The application of the quantitative fluorescence-PCR using STRs located in the critical region could be a reliable method to evaluate the presence of the PMP22 duplication for the diagnosis and classification of hereditary neuropathies in asymptomatic subjects with a family history of inherited neuropathy, in prenatal samples in cases with one affected parent, and in unrelated patients with a sporadic demyelinating neuropathy with clinical features resembling CMT (i.e., pes cavus with hammer toes) or with conduction velocities in the range of CMT1A.


Subject(s)
Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/genetics , Microsatellite Repeats , Polymerase Chain Reaction/methods , Adult , Base Sequence , Charcot-Marie-Tooth Disease/classification , DNA Primers/genetics , Female , Genetic Markers , Humans , Male , Middle Aged , Myelin Proteins/genetics , Pedigree , Pregnancy
2.
Am J Med Genet A ; 143A(9): 907-15, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17394203

ABSTRACT

Barth syndrome is an X-linked recessive disorder caused by the tafazzin (TAZ) gene mutations and includes dilated cardiomyopathy (DCM) with left ventricular non-compaction, neutropenia, skeletal myopathy, abnormal mitochondria and 3-methylglutaconic aciduria. Dilated cardiomyopathy with left ventricular non-compaction transmitted as an autosomal dominant condition has also been associated with LIM domain-binding 3 (LDB3) gene defects. We describe a family in which the 12-year-old proband had left ventricular non-compaction and DCM. His mother had five miscarriages, two other sons who died in infancy, and a healthy son and daughter. The proband showed left ventricular non-compaction-DCM, skeletal myopathy, recurrent oral aphthous ulcers and cyclic neutropenia. The DCM progressively improved with age; medical therapy was discontinued at 5 years of age. At present, left ventricular function is normal and arrhythmias are absent. Magnetic resonance imaging documented left ventricular non-compaction. However, oral aphthous ulcers and cyclic neutropenia have recurred. In the proband we identified two novel mutations, one of maternal origin in the TAZ gene (p.[Glu202ValfsX15]) and one of paternal origin in the LDB3 gene (p.[Thr350Ile]). The mother, brother and father are healthy; although the latter two show prominent left ventricle trabeculation without dysfunction. Expression studies of TAZ and LDB3 genes were conducted in family members and controls. In the proband, brother and father, LDB3 expression was similar to control cases. TAZ and LDB3 expression progressively declined with age in control both blood and myocardial samples. However, an endomyocardial biopsy performed in the proband at 6 months of age, showed significantly lower TAZ and LDB3 expression than in age-matched myocardial controls. We believe that the clinical, genetic and expression data support the hypothesis that tafazzins are essential during fetal and early post-natal life.


Subject(s)
Abnormalities, Multiple/genetics , Adaptor Proteins, Signal Transducing/genetics , Cardiomyopathy, Dilated/genetics , Genetic Diseases, X-Linked/genetics , Heterozygote , Proteins/genetics , Transcription Factors/genetics , Acyltransferases , Cardiomyopathy, Dilated/congenital , Child , DNA Mutational Analysis , Gene Expression Profiling , Heart Ventricles/abnormalities , Humans , LIM Domain Proteins , Male , Models, Molecular , Pedigree , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...