Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biometals ; 37(1): 157-169, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37725248

ABSTRACT

The ability of marine filter feeders to accumulate metals could help monitor the health of the marine environment. This study examined the concentration of metallic trace elements (MTE) in two marine sponges, Rhabdastrella globostellata and Hyrtios erectus, from three sampling zones of the semi-enclosed Bouraké Lagoon (New Caledonia, South West Pacific). MTE in sponge tissues, seawater, and surrounding sediments was measured using inductively coupled plasma with optical emission spectroscopy. The variability in sponge MTE concentrations between species and sampling zones was visually discriminated using a principal component analysis (PCA). Sponges showed Fe, Mn, Cr, Ni, and Zn concentrations 2 to 10 times higher than in the surrounding sediments and seawater. Hyrtios erectus accumulated 3 to 20 times more MTE than R. globostellata, except for Zn. Average bioconcentration factors in sponge tissues were (in decreasing order) Zn > Ni > Mn > Fe > Cr relate to sediments and Fe > Ni > Mn > Cr > Zn relate to seawater. The PCA confirmed higher MTE concentrations in H. erectus compared to R. globostellata. Our results confirm that marine sponges can accumulate MTE to some extent and could be used as a tool for assessing metals contamination in lagoon ecosystems, particularly in New Caledonia, where 40% of the lagoon is classified as a UNESCO World Heritage Site.


Subject(s)
Metals, Heavy , Porifera , Trace Elements , Water Pollutants, Chemical , Animals , Trace Elements/analysis , Ecosystem , Environmental Monitoring/methods , Metals , Geologic Sediments/analysis , Geologic Sediments/chemistry
2.
Mar Pollut Bull ; 190: 114869, 2023 May.
Article in English | MEDLINE | ID: mdl-37023545

ABSTRACT

Sponges are a key component of coral reef ecosystems and play an important role in carbon and nutrient cycles. Many sponges are known to consume dissolved organic carbon and transform this into detritus, which moves through detrital food chains and eventually to higher trophic levels via what is known as the sponge loop. Despite the importance of this loop, little is known about how these cycles will be impacted by future environmental conditions. During two years (2018 and 2020), we measured the organic carbon, nutrient recycling, and photosynthetic activity of the massive HMA, photosymbiotic sponge Rhabdastrella globostellata at the natural laboratory of Bouraké in New Caledonia, where the physical and chemical composition of seawater regularly change according to the tide. We found that while sponges experienced acidification and low dissolved oxygen at low tide in both sampling years, a change in organic carbon recycling whereby sponges stopped producing detritus (i.e., the sponge loop) was only found when sponges also experienced higher temperature in 2020. Our findings provide new insights into how important trophic pathways may be affected by changing ocean conditions.


Subject(s)
Ecosystem , Porifera , Animals , Coral Reefs , Seawater/chemistry , Carbon/metabolism , Nutrients/metabolism , Porifera/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...