Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37109937

ABSTRACT

With the goal of substituting a hard metallic material for the soft Ultra High Molecular Weight Polyethylene (UHMWPE) presently used to make the bases of skis for alpine skiing, we used two non-thermodynamic equilibrium surface treatments with ultra-short (7-8 ps) laser pulses to modify the surface of square plates (50 × 50 mm2) made of austenitic stainless steel AISI 301H. By irradiating with linearly polarized pulses, we obtained Laser Induced Periodic Surface Structures (LIPSS). By laser machining, we produced a laser engraving on the surface. Both treatments produce a surface pattern parallel to one side of the sample. For both treatments, we measured with a dedicated snow tribometer the friction coefficient µ on compacted snow at different temperatures (-10 °C; -5 °C; -3 °C) for a gliding speed range between 1 and 6.1 ms-1. We compared the obtained µ values with those of untreated AISI 301H plates and of stone grinded, waxed UHMWPE plates. At the highest temperature (-3 °C), near the snow melting point, untreated AISI 301H shows the largest µ value (0.09), much higher than that of UHMWPE (0.04). Laser treatments on AISI 301H gave lower µ values approaching UHMWPE. We studied how the surface pattern disposition, with respect to the gliding direction of the sample on snow, affects the µ trend. For LIPSS with pattern, orientation perpendicular to the gliding direction on snow µ (0.05) is comparable with that of UHMWPE. We performed field tests on snow at high temperature (from -0.5 to 0 °C) using full-size skis equipped with bases made of the same materials used for the laboratory tests. We observed a moderate difference in performance between the untreated and the LIPSS treated bases; both performed worse than UHMWPE. Waxing improved the performance of all bases, especially LIPSS treated.

2.
Phys Chem Chem Phys ; 24(17): 10499-10505, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35441636

ABSTRACT

The hydrogen bond network has a major role in determining the physical and chemical properties of water both in the solid and in the liquid state. In the bulk liquid phase, there is a coexistence of water molecules with different degrees of coordination and their relative amount changes according to the conditions (e.g., temperature, presence of solutes). Ice shows a larger amount of topologically under-coordinated water molecules at the surface as compared to the bulk. Snow is composed of many ice crystallites, and it differs from bulk ice because of the much larger specific surface area. The OH-stretching band is the most intense signal of the Raman spectrum of water, and it gives direct insight about the hydrogen bond network. In this work we compared the OH-stretching region of the Raman spectra of water, ice and snow acquired with excitations in the visible (532 nm) and in the UV-C range (250-200 nm) by exploiting the tunability of the synchrotron radiation. By moving towards the highest energy excitation we observed in liquid water a monotonic increase of the relative intensities of the peaks associated with weakly hydrogen-bonded water molecules. With visible excitation, the Raman spectrum of snow displays a larger contribution from weakly hydrogen-bonded water molecules at the surfaces when compared to the spectrum of bulk ice. By using excitation sources in the UV-C range, we observe a further enhancement of the contribution of the surfaces in the spectra of snow. By considering the reported changes of the water absorption coefficient in relation to the hydrogen bonding environment, we interpreted our results as a preferential pre-resonance excitation of weakly hydrogen-bonded water molecules induced by the UV-C sources.

3.
Molecules ; 27(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35163890

ABSTRACT

In snow, water coexists in solid, liquid and vapor states. The relative abundance of the three phases drives snow grain metamorphism and affects the physical properties of the snowpack. Knowledge of the content of the liquid phase in snow is critical to estimate the snowmelt runoff and to forecast the release of wet avalanches. Liquid water does not spread homogeneously through a snowpack because different snow layers have different permeabilities; therefore, it is important to track sudden changes in the amount of liquid water within a specific layer. We reproduced water percolation in the laboratory, and used Raman spectroscopy to detect the presence of the liquid phase in controlled snow samples. We performed experiments on both fine- and coarse-grained snow. The obtained snow spectra are well fitted by a linear combination of the spectra typical of liquid water and ice. We progressively charged snow with liquid water from dry snow up to soaked snow. As a result, we exploited continuous, qualitative monitoring of the evolution of the liquid water content as reflected by the fitting coefficient c.

4.
Molecules ; 25(19)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998377

ABSTRACT

The current devices used to produce massive amounts of snow (i.e., snow machines) can be improved with concern to both the energy efficiency and the quality of snow. Here we investigate an alternative snow production method based on the ultrasonic nebulization of water and its subsequent condensation on the cold surfaces of a refrigerator. Inspection of the snow samples with a stereo optical microscope shows both dendritic and granular snow morphologies. The characterization of the samples by Raman spectroscopy shows a behavior consistent with that of a natural, low-density snow. Our results indicate that ultrasonic nebulization of water is an effective strategy for producing natural-like snow at the laboratory scale.


Subject(s)
Nebulizers and Vaporizers , Snow/chemistry , Spectrum Analysis, Raman , Ultrasonics , Water/chemistry , Crystallization , Ultrasonics/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...