Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 204(Pt A): 111970, 2022 03.
Article in English | MEDLINE | ID: mdl-34474031

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic has officially spread all over the world since the beginning of 2020. Although huge efforts are addressed by scientists to shed light over the several questions raised by the novel SARS-CoV-2 virus, many aspects need to be clarified, yet. In particular, several studies have pointed out significant variations between countries in per-capita mortality. In this work, we investigated the association between COVID-19 mortality with climate variables and air pollution throughout European countries using the satellite remote sensing images provided by the Sentinel-5p mission. We analyzed data collected for two years of observations and extracted the concentrations of several pollutants; we used these measurements to feed a Random Forest regression. We performed a cross-validation analysis to assess the robustness of the model and compared several regression strategies. Our findings reveal a significant statistical association between air pollution (NO2) and COVID-19 mortality and a significant role played by the socio-demographic features, like the number of nurses or the hospital beds and the gross domestic product per capita.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring , Humans , Machine Learning , Nitrogen Dioxide , Particulate Matter/analysis , SARS-CoV-2
2.
Neuroimage ; 225: 117458, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33099008

ABSTRACT

In recent years, several studies have demonstrated that machine learning and deep learning systems can be very useful to accurately predict brain age. In this work, we propose a novel approach based on complex networks using 1016 T1-weighted MRI brain scans (in the age range 7-64years). We introduce a structural connectivity model of the human brain: MRI scans are divided in rectangular boxes and Pearson's correlation is measured among them in order to obtain a complex network model. Brain connectivity is then characterized through few and easy-to-interpret centrality measures; finally, brain age is predicted by feeding a compact deep neural network. The proposed approach is accurate, robust and computationally efficient, despite the large and heterogeneous dataset used. Age prediction accuracy, in terms of correlation between predicted and actual age r=0.89and Mean Absolute Error MAE =2.19years, compares favorably with results from state-of-the-art approaches. On an independent test set including 262 subjects, whose scans were acquired with different scanners and protocols we found MAE =2.52. The only imaging analysis steps required in the proposed framework are brain extraction and linear registration, hence robust results are obtained with a low computational cost. In addition, the network model provides a novel insight on aging patterns within the brain and specific information about anatomical districts displaying relevant changes with aging.


Subject(s)
Adolescent Development , Aging , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Child Development , Deep Learning , Adolescent , Adult , Autism Spectrum Disorder/physiopathology , Brain/growth & development , Brain/physiology , Brain/physiopathology , Child , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Networks, Computer , Young Adult
3.
Front Aging Neurosci ; 11: 115, 2019.
Article in English | MEDLINE | ID: mdl-31178715

ABSTRACT

Recent works have extensively investigated the possibility to predict brain aging from T1-weighted MRI brain scans. The main purposes of these studies are the investigation of subject-specific aging mechanisms and the development of accurate models for age prediction. Deviations between predicted and chronological age are known to occur in several neurodegenerative diseases; as a consequence, reaching higher levels of age prediction accuracy is of paramount importance to develop diagnostic tools. In this work, we propose a novel complex network model for brain based on segmenting T1-weighted MRI scans in rectangular boxes, called patches, and measuring pairwise similarities using Pearson's correlation to define a subject-specific network. We fed a deep neural network with nodal metrics, evaluating both the intensity and the uniformity of connections, to predict subjects' ages. Our model reaches high accuracies which compare favorably with state-of-the-art approaches. We observe that the complex relationships involved in this brain description cannot be accurately modeled with standard machine learning approaches, such as Ridge and Lasso regression, Random Forest, and Support Vector Machines, instead a deep neural network has to be used.

4.
Entropy (Basel) ; 21(5)2019 May 06.
Article in English | MEDLINE | ID: mdl-33267189

ABSTRACT

In this paper, we investigate the connectivity alterations of the subcortical brain network due to Alzheimer's disease (AD). Mostly, the literature investigated AD connectivity abnormalities at the whole brain level or at the cortex level, while very few studies focused on the sub-network composed only by the subcortical regions, especially using diffusion-weighted imaging (DWI) data. In this work, we examine a mixed cohort including 46 healthy controls (HC) and 40 AD patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) data set. We reconstruct the brain connectome through the use of state of the art tractography algorithms and we propose a method based on graph communicability to enhance the information content of subcortical brain regions in discriminating AD. We develop a classification framework, achieving 77% of area under the receiver operating characteristic (ROC) curve in the binary discrimination AD vs. HC only using a 12 × 12 subcortical features matrix. We find some interesting AD-related connectivity patterns highlighting that subcortical regions tend to increase their communicability through cortical regions to compensate the physical connectivity reduction between them due to AD. This study also suggests that AD connectivity alterations mostly regard the inter-connectivity between subcortical and cortical regions rather than the intra-subcortical connectivity.

5.
Front Aging Neurosci ; 10: 365, 2018.
Article in English | MEDLINE | ID: mdl-30487745

ABSTRACT

Analysis and quantification of brain structural changes, using Magnetic Resonance Imaging (MRI), are increasingly used to define novel biomarkers of brain pathologies, such as Alzheimer's disease (AD). Several studies have suggested that brain topological organization can reveal early signs of AD. Here, we propose a novel brain model which captures both intra- and inter-subject information within a multiplex network approach. This model localizes brain atrophy effects and summarizes them with a diagnostic score. On an independent test set, our multiplex-based score segregates (i) normal controls (NC) from AD patients with a 0.86±0.01 accuracy and (ii) NC from mild cognitive impairment (MCI) subjects that will convert to AD (cMCI) with an accuracy of 0.84±0.01. The model shows that illness effects are maximally detected by parceling the brain in equal volumes of 3, 000 mm3 ("patches"), without any a priori segmentation based on anatomical features. The multiplex approach shows great sensitivity in detecting anomalous changes in the brain; the robustness of the obtained results is assessed using both voxel-based morphometry and FreeSurfer morphological features. Because of its generality this method can provide a reliable tool for clinical trials and a disease signature of many neurodegenerative pathologies.

6.
Phys Med Biol ; 62(6): 2361-2375, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28234631

ABSTRACT

Diffusion tensor imaging (DTI) is a promising imaging technique that provides insight into white matter microstructure integrity and it has greatly helped identifying white matter regions affected by Alzheimer's disease (AD) in its early stages. DTI can therefore be a valuable source of information when designing machine-learning strategies to discriminate between healthy control (HC) subjects, AD patients and subjects with mild cognitive impairment (MCI). Nonetheless, several studies have reported so far conflicting results, especially because of the adoption of biased feature selection strategies. In this paper we firstly analyzed DTI scans of 150 subjects from the Alzheimer's disease neuroimaging initiative (ADNI) database. We measured a significant effect of the feature selection bias on the classification performance (p-value < 0.01), leading to overoptimistic results (10% up to 30% relative increase in AUC). We observed that this effect is manifest regardless of the choice of diffusion index, specifically fractional anisotropy and mean diffusivity. Secondly, we performed a test on an independent mixed cohort consisting of 119 ADNI scans; thus, we evaluated the informative content provided by DTI measurements for AD classification. Classification performances and biological insight, concerning brain regions related to the disease, provided by cross-validation analysis were both confirmed on the independent test.


Subject(s)
Alzheimer Disease/diagnostic imaging , Diffusion Tensor Imaging/methods , Aged , Aged, 80 and over , Alzheimer Disease/classification , Anisotropy , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Diagnosis, Differential , Female , Humans , Male , Middle Aged , White Matter/diagnostic imaging
7.
Phys Rev Lett ; 93(20): 203901, 2004 Nov 12.
Article in English | MEDLINE | ID: mdl-15600924

ABSTRACT

We consider the paraxial model for a nonlinear resonator with a saturable absorber beyond the mean-field limit. For accessible parametric domains we observe total radiation confinement and the formation of 3D localized bright structures. Different from freely propagating light bullets, here the self-organization proceeds from the resonator feedback, combined with diffraction and nonlinearity. Such "cavity" light bullets can be independently excited and erased by appropriate pulses, and once created, they endlessly travel the cavity round-trip.

8.
Nature ; 419(6908): 699-702, 2002 Oct 17.
Article in English | MEDLINE | ID: mdl-12384692

ABSTRACT

Cavity solitons are localized intensity peaks that can form in a homogeneous background of radiation. They are generated by shining laser pulses into optical cavities that contain a nonlinear medium driven by a coherent field (holding beam). The ability to switch cavity solitons on and off and to control their location and motion by applying laser pulses makes them interesting as potential 'pixels' for reconfigurable arrays or all-optical processing units. Theoretical work on cavity solitons has stimulated a variety of experiments in macroscopic cavities and in systems with optical feedback. But for practical devices, it is desirable to generate cavity solitons in semiconductor structures, which would allow fast response and miniaturization. The existence of cavity solitons in semiconductor microcavities has been predicted theoretically, and precursors of cavity solitons have been observed, but clear experimental realization has been hindered by boundary-dependence of the resulting optical patterns-cavity solitons should be self-confined. Here we demonstrate the generation of cavity solitons in vertical cavity semiconductor microresonators that are electrically pumped above transparency but slightly below lasing threshold. We show that the generated optical spots can be written, erased and manipulated as objects independent of each other and of the boundary. Numerical simulations allow for a clearer interpretation of experimental results.

9.
Opt Express ; 10(19): 1009-17, 2002 Sep 23.
Article in English | MEDLINE | ID: mdl-19451958

ABSTRACT

In this paper we study the dynamics of the intracavity field, carriers and lattice temperature in externally driven semiconductor microcavities. The combination/competition of the different time-scales of the dynamical variables together with diffraction and carrier/thermal diffusions are responsible for new dynamical behaviors. We report here the occurrence of a spatio-temporal instability of the Hopf type giving rise to Regenerative Oscillations and travelling patterns and cavity solitons.

SELECTION OF CITATIONS
SEARCH DETAIL
...