Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroophthalmol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926909

ABSTRACT

ABSTRACT: A 46-year-old man presented with left eye blurring. Automated visual field testing showed an incongruous right hemianopia, with sparing of the lower temporal quadrant in the right eye. MRI revealed foci of gadolinium enhancement in the optic chiasm and optic tracts. Serologic testing (including myelin oligodendrocyte glycoprotein and neuromyelitis optica antibodies) and cerebrospinal fluid analysis were negative. Whole-body PET/CT scan found no malignancy. Biopsy of the optic chiasm revealed a moderately cellular neoplasm composed of atypical, discohesive cells with enlarged nuclei, prominent eosinophilic nucleoli, and abundant vacuolated cytoplasm. Immunohistochemical stains for CD68 and S100 were positive, whereas those for GFAP, OLIG2, SOX10, and multiple others were negative, supporting a diagnosis of histiocytic neoplasm. Five weeks later, results became available from next-generation sequencing targeting the coding regions of hundreds of malignancy-associated genes and select introns. Alterations associated with histiocytic neoplasms (i.e. BRAF and MAP2K1 mutations) were absent. However, there was a nonsense mutation in the PTEN gene, a hotspot mutation in the TERT gene promotor, and focal amplifications of the CDK4 and MDM2 genes. Additionally, there was chromosome 6q loss, 7 gain, and 10q loss. Based on these findings, the diagnosis was revised to glioblastoma, IDH-wildtype, CNS WHO grade 4. The patient began treatment with temozolomide while continuing radiation therapy. This case illustrates how next-generation sequencing can at times provide more accurate diagnostic information than standard tissue histopathology.

2.
Cell Death Dis ; 10(8): 567, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358730

ABSTRACT

Phosphatase and tensin homolog (PTEN) regulates apoptosis and axonal growth in the developing and adult central nervous system (CNS). Here, we show that human PTEN C-terminal PDZ interactions play a critical role in neuronal apoptosis and axon regeneration after traumatic CNS injury and stroke, highlighted by the findings that antagonizing the PDZ-motif interactions of PTEN has therapeutic applicability for these indications. Interestingly, the death-inducing function of PTEN following ischemic insult depends on a PDZ-domain interaction with MAGI-2 and MAST205, PDZ proteins that are known to recruit PTEN to the plasma membrane and stabilize its interaction with PIP3. Treatments with a human peptide that prevents PTEN association with MAGI-2 or MAST205 increased neuronal survival in multiple stroke models, in vitro. A pro-survival effect was also observed in models of retinal ischemia, optic nerve transection, and after middle cerebral artery occlusion (MCAO) in adult rats. The human PTEN peptide also improved axonal regeneration in the crushed optic nerve. Furthermore, human PTEN peptide therapy promoted functional improvement after MCAO or retinal ischemia induced via ophthalmic artery ligation. These findings show that the human peptide-based targeting of C-terminal PTEN PDZ interactions has therapeutic potential for insults of the CNS, including trauma and stroke.


Subject(s)
Infarction, Middle Cerebral Artery/metabolism , Nerve Regeneration/physiology , Optic Nerve Injuries/metabolism , PTEN Phosphohydrolase/chemistry , PTEN Phosphohydrolase/metabolism , Recovery of Function/physiology , Retinal Ganglion Cells/metabolism , Amino Acid Sequence , Animals , Axons/physiology , Cell Survival , Disease Models, Animal , Exercise/physiology , Female , HEK293 Cells , Humans , Mitogen-Activated Protein Kinases/metabolism , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Optic Nerve/physiology , PDZ Domains , Peptides/administration & dosage , Peptides/chemistry , Peptides/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Rats , Rats, Sprague-Dawley
3.
PLoS One ; 9(7): e101349, 2014.
Article in English | MEDLINE | ID: mdl-24983470

ABSTRACT

Retinal ganglion cells (RGCs) are neurons that relay visual signals from the retina to the brain. The RGC cell bodies reside in the retina and their fibers form the optic nerve. Full transection (axotomy) of the optic nerve is an extra-retinal injury model of RGC degeneration. Optic nerve transection permits time-kinetic studies of neurodegenerative mechanisms in neurons and resident glia of the retina, the early events of which are reported here. One day after injury, and before atrophy of RGC cell bodies was apparent, glia had increased levels of phospho-Akt, phospho-S6, and phospho-ERK1/2; however, these signals were not detected in injured RGCs. Three days after injury there were increased levels of phospho-Rb and cyclin A proteins detected in RGCs, whereas these signals were not detected in glia. DNA hyperploidy was also detected in RGCs, indicative of cell cycle re-entry by these post-mitotic neurons. These events culminated in RGC death, which is delayed by pharmacological inhibition of the MAPK/ERK pathway. Our data show that a remote injury to RGC axons rapidly conveys a signal that activates retinal glia, followed by RGC cell cycle re-entry, DNA hyperploidy, and neuronal death that is delayed by preventing glial MAPK/ERK activation. These results demonstrate that complex and variable neuro-glia interactions regulate healthy and injured states in the adult mammalian retina.


Subject(s)
Cell Cycle , Neuroglia/enzymology , Optic Nerve Injuries/complications , Retinal Degeneration/etiology , Retinal Ganglion Cells/metabolism , Animals , Axotomy , Cell Death , Female , Kinetics , Optic Nerve/physiopathology , Rats , Rats, Wistar , Retina/enzymology , Retinal Degeneration/enzymology , Retinal Degeneration/metabolism , Signal Transduction
4.
Invest Ophthalmol Vis Sci ; 53(7): 3973-89, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22531700

ABSTRACT

PURPOSE: Retinal ganglion cell (RGC) degeneration is an important cause of visual impairment and can be modeled by optic nerve transection, which causes the death of 90% of RGCs within 14 days postaxotomy. We performed a proteomic study to identify and quantify proteins in the rat retina after optic nerve transection. Our goal was to isolate potential targets for therapeutic intervention to prevent RGC degeneration. METHODS: iTRAQ proteomics was used to analyze adult rat retinas at 1, 3, 4, 7, 14, and 21 days postaxotomy. Hepatoma-derived growth factor (HDGF), a target identified by iTRAQ, was delivered by intraocular injections. Wortmannin or PD98059 were coadministered with HDGF to determine if the protective effects of HDGF are dependent on PI3 kinase or MAP kinase activity, respectively. RESULTS: At a false-discovery rate of 5%, 216 proteins were identified by iTRAQ proteomics, 71 of which showed changes in expression (<0.7× or >1.3×) at one time point after injury: 52 proteins had expression peaks, whereas 19 showed downward expression spikes. Levels of GAPDH did not change after axotomy. Among these differentially expressed proteins was HDGF. HDGF delivery significantly increased RGC survival compared with control treatments, and increased Akt phosphorylation in the retina at 24 hours after intraocular injection. RGC rescue by HDGF was dependent on both MAP kinase and PI3 kinase activity in the retina. CONCLUSIONS: We have identified numerous proteins that are differentially regulated at key time points after axotomy, and how the temporal profiles of their expression parallel RGC death. Using these data, we showed that HDGF is a potent neuroprotective factor for injured adult RGCs.


Subject(s)
Eye Proteins/analysis , Intercellular Signaling Peptides and Proteins/pharmacology , Neuroprotective Agents/pharmacology , Optic Nerve Injuries/metabolism , Optic Nerve/metabolism , Retinal Degeneration/prevention & control , Retinal Ganglion Cells/metabolism , Animals , Blotting, Western , Cell Survival/drug effects , Disease Models, Animal , Female , Optic Nerve/pathology , Optic Nerve Injuries/complications , Optic Nerve Injuries/pathology , Rats , Rats, Sprague-Dawley , Retinal Degeneration/etiology , Retinal Degeneration/metabolism , Retinal Ganglion Cells/pathology , Signal Transduction
5.
J Neurotrauma ; 28(9): 1863-79, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21902538

ABSTRACT

Recent studies have identified anti-apoptotic functions for vascular endothelial growth factor (VEGF) in the central nervous system (CNS). However, VEGF therapy has been hampered by a tendency to promote vascular permeability, edema, and inflammation. Recently, engineered zinc finger proteins (ZFPs) that upregulate multiple forms of VEGF in their natural biological ratios, have been developed to overcome these negative side effects. We used retinal trauma and ischemia models, and a cortical pial strip ischemia model to determine if VEGF upregulating ZFPs are neuroprotective in the adult CNS. Optic nerve transection and ophthalmic artery ligation lead to the apoptotic degeneration of retinal ganglion cells (RGCs) and are, respectively, two highly reproducible models for CNS trauma or ischemia. Adeno-associated vectors (AAV) vectors encoding VEGF-ZFPs (AAV-VEGF-ZFP) significantly increased RGC survival by ∼twofold at 14 days after optic nerve transection or ophthalmic artery ligation. Furthermore, AAV-VEGF-ZFP enhanced recovery of the pupillary light reflex. RECA-1 immunostaining demonstrated no appreciable differences between retinas treated with AAV-VEGF-ZFP and controls, suggesting that AAV-VEGF-ZFP treatment did not affect retinal vasculature. Following pial strip of the forelimb motor cortex, brains treated with an adenovirus encoding VEGF ZFPs (AdV-ZFP) showed higher neuronal survival, accelerated wound contraction, and reduced lesion volume between 1 and 6 weeks after injury. Behavioral testing using the cylinder test for vertical exploration showed that AdV-VEGF-ZFP treatment enhanced contralateral forelimb function within the first 2 weeks after injury. Our results indicate that VEGF ZFP therapy is neuroprotective following traumatic injury or stroke in the adult mammalian CNS.


Subject(s)
Brain Injuries/therapy , Genetic Therapy/methods , Stroke/therapy , Up-Regulation/genetics , Vascular Endothelial Growth Factor A/genetics , Zinc Fingers/genetics , Animals , Behavior, Animal/physiology , Brain Injuries/genetics , Optic Nerve Injuries/genetics , Optic Nerve Injuries/therapy , Protein Engineering , Rats , Recovery of Function/genetics , Stroke/genetics , Treatment Outcome , Vascular Endothelial Growth Factor A/metabolism
6.
J Neurosci ; 31(29): 10494-505, 2011 Jul 20.
Article in English | MEDLINE | ID: mdl-21775595

ABSTRACT

To promote functional recovery after CNS injuries, it is crucial to develop strategies that enhance both neuronal survival and regeneration. Here, we report that caspase-6 is upregulated in injured retinal ganglion cells and that its inhibition promotes both survival and regeneration in these adult CNS neurons. Treatment of rat retinal whole mounts with Z-VEID-FMK, a selective inhibitor of caspase-6, enhanced ganglion cell survival. Moreover, retinal explants treated with this drug extended neurites on myelin. We also show that caspase-6 inhibition resulted in improved ganglion cell survival and robust axonal regeneration following optic nerve injury in adult rats. The effects of Z-VEID-FMK were similar to other caspase inhibitory peptides including Z-LEHD-FMK and Z-VAD-FMK. In searching for downstream effectors for caspase-6, we identified caspase-8, whose expression pattern resembled that of caspase-6 in the injured eye. We then showed that caspase-8 is activated downstream of caspase-6 in the injured adult retina. Furthermore, we investigated the role of caspase-8 in RGC apoptosis and regenerative failure both in vitro and in vivo. We observed that caspase-8 inhibition by Z-IETD-FMK promoted survival and regeneration to an extent similar to that obtained with caspase-6 inhibition. Our results indicate that caspase-6 and caspase-8 are components of a cellular pathway that prevents neuronal survival and regeneration in the adult mammalian CNS.


Subject(s)
Apoptosis/physiology , Caspase 6/metabolism , Caspase 8/metabolism , Nerve Regeneration/physiology , Optic Nerve Injuries/pathology , Retinal Ganglion Cells/enzymology , Animals , Animals, Newborn , Apoptosis/drug effects , Axons/drug effects , Cell Survival/drug effects , Cholera Toxin , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Female , GAP-43 Protein/metabolism , Injections, Intraocular/methods , Male , Myelin Sheath/metabolism , Nerve Regeneration/drug effects , Organ Culture Techniques , Rats , Rats, Sprague-Dawley , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Retrograde Degeneration/prevention & control , Stilbamidines
7.
J Proteome Res ; 10(8): 3344-62, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21627321

ABSTRACT

Retinal ganglion cells (RGCs) are central nervous system (CNS) neurons that transmit visual information from the retina to the brain. Apoptotic RGC degeneration causes visual impairment that can be modeled by optic nerve crush. Neuronal apoptosis is also a salient feature of CNS trauma, ischemia (stroke), and diseases of the CNS such as Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis. Optic nerve crush induces the apoptotic cell death of ∼ 70% of RGCs within the first 14 days after injury. This model is particularly attractive for studying adult neuron apoptosis because the time-course of RGC death is well established and axon regeneration within the myelinated optic nerve can be concurrently evaluated. Here, we performed a large scale iTRAQ proteomic study to identify and quantify proteins of the rat retina at 1, 3, 4, 7, 14, and 21 days after optic nerve crush. In total, 337 proteins were identified, and 110 were differentially regulated after injury. Of these, 58 proteins were upregulated (>1.3 ×), 46 were downregulated (<0.7 ×), and 6 showed both positive and negative regulation over 21 days, relative to normal retinas. Among the differentially expressed proteins, Thymosin-ß4 showed an early upregulation at 3 days, the time-point that immediately precedes the induction of RGC apoptosis after injury. We examined the effect of exogenous Thymosin-ß4 administration on RGC death after optic nerve injury. Intraocular injections of Thymosin-ß4 significantly increased RGC survival by ∼ 3-fold compared to controls and enhanced axon regeneration after crush, demonstrating therapeutic potential for CNS insults. Overall, our study identified numerous proteins that are differentially regulated at key time-points after optic nerve crush, and how the temporal profiles of their expression parallel RGC death. This data will aid in the future development of novel therapeutics to promote neuronal survival and regeneration in the adult CNS.


Subject(s)
Optic Nerve Injuries/pathology , Retinal Ganglion Cells/pathology , Tandem Mass Spectrometry/methods , Animals , Apoptosis , Chromatography, High Pressure Liquid , Eye Proteins/metabolism , Optic Nerve Injuries/metabolism , Proteomics , Rats , Retinal Ganglion Cells/metabolism
8.
J Vis Exp ; (51)2011 May 12.
Article in English | MEDLINE | ID: mdl-21610673

ABSTRACT

Retinal ganglion cells (RGCs) are CNS neurons that output visual information from the retina to the brain, via the optic nerve. The optic nerve can be accessed within the orbit of the eye and completely transected (axotomized), cutting the axons of the entire RGC population. Optic nerve transection is a reproducible model of apoptotic neuronal cell death in the adult CNS (1-4). This model is particularly attractive because the vitreous chamber of the eye acts as a capsule for drug delivery to the retina, permitting experimental manipulations via intraocular injections. The diffusion of chemicals through the vitreous fluid ensures that they act upon the entire RGC population. Moreover, RGCs can be selectively transfected by applying short interfering RNAs (siRNAs), plasmids, or viral vectors to the cut end of the optic nerve (5-7) or injecting vectors into their target, the superior colliculus (8). This allows researchers to study apoptotic mechanisms in the desired neuronal population without confounding effects on other bystander neurons or surrounding glia. An additional benefit is the ease and accuracy with which cell survival can be quantified after injury. The retina is a flat, layered tissue and RGCs are localized in the innermost layer, the ganglion cell layer. The survival of RGCs can be tracked over time by applying a fluorescent tracer (3% Fluorogold) to the cut end of the optic nerve at the time of axotomy, or by injecting the tracer into the superior colliculus (RGC target) one week prior to axotomy. The tracer is retrogradely transported, labeling the entire RGC population. Because the ganglion cell layer is a monolayer (one cell thick), RGC densities can be quantified in flat-mounted tissue, without the need for stereology. Optic nerve transection leads to the apoptotic death of 90% of injured RGCs within 14 days postaxotomy (9-11). RGC apoptosis has a characteristic time-course whereby cell death is delayed 3-4 days postaxotomy, after which the cells rapidly degenerate. This provides a time window for experimental manipulations directed against pathways involved in apoptosis.


Subject(s)
Apoptosis/physiology , Central Nervous System/cytology , Neurons/cytology , Neurosurgical Procedures/methods , Optic Nerve/cytology , Optic Nerve/surgery , Retinal Ganglion Cells/cytology , Animals , Rats
9.
J Vis Exp ; (51)2011 May 12.
Article in English | MEDLINE | ID: mdl-21610674

ABSTRACT

Retinal ganglion cells (RGCs) are CNS neurons that output visual information from the retina to the brain, via the optic nerve. The optic nerve can be accessed within the orbit of the eye and completely transected (axotomized), cutting the axons of the entire RGC population. Optic nerve transection is a reproducible model of apoptotic neuronal cell death in the adult CNS (1-4). This model is particularly attractive because the vitreous chamber of the eye acts as a capsule for drug delivery to the retina, permitting experimental manipulations via intraocular injections. The diffusion of chemicals through the vitreous fluid ensures that they act upon the entire RGC population. Viral vectors, plasmids or short interfering RNAs (siRNAs) can also be delivered to the vitreous chamber in order to infect or transfect retinal cells (5-12). The high tropism of Adeno-Associated Virus (AAV) vectors is beneficial to target RGCs, with an infection rate approaching 90% of cells near the injection site (6, 7, 13-15). Moreover, RGCs can be selectively transfected by applying siRNAs, plasmids, or viral vectors to the cut end of the optic nerve (16-19) or injecting vectors into their target the superior colliculus (10). This allows researchers to study apoptotic mechanisms in the injured neuronal population without confounding effects on other bystander neurons or surrounding glia. RGC apoptosis has a characteristic time-course whereby cell death is delayed 3-4 days postaxotomy, after which the cells rapidly degenerate. This provides a window for experimental manipulations directed against pathways involved in apoptosis. Manipulations that directly target RGCs from the transected optic nerve stump are performed at the time of axotomy, immediately after cutting the nerve. In contrast, when substances are delivered via an intraocular route, they can be injected prior to surgery or within the first 3 days after surgery, preceding the initiation of apoptosis in axotomized RGCs. In the present article, we demonstrate several methods for experimental manipulations after optic nerve transection.


Subject(s)
Central Nervous System/surgery , Neurosurgical Procedures/methods , Optic Nerve/surgery , Retinal Ganglion Cells/cytology , Animals , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...