Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Hazard Mater ; 458: 131998, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37421855

ABSTRACT

Asbestos is widely recognized as being a carcinogen when dispersed in air, but very little is known about its exposure pathways in water and its subsequent effects on human health. Several studies have proved asbestos presence in groundwater but failed to assess its mobility in aquifer systems. This paper aims to fill this gap by studying the transport of crocidolite, an amphibole asbestos, through sandy porous media mimicking different aquifer systems. To this purpose, two sets of column test were performed varying the crocidolite suspension concentration, the quartz sand grain size distribution, and the physicochemical water parameters (i.e., pH). The results proved that crocidolite is mobile in quartz sand due to the repulsive interactions between fibres and porous media. The concentration of fibres at the outlet of the column were found to decrease when decreasing the grain size distribution of the porous medium, with a bigger impact on highly concentrated suspensions. In particular, 5-to-10-µm-long fibres were able to flow through all the tested sands while fibres longer than 10 µm were mobile only through the coarser medium. These results confirm that groundwater migration should be considered a potential exposure pathway while implementing human health risk assessment.

2.
J Hazard Mater ; 436: 129011, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35643007

ABSTRACT

Microplastics detected in potable water sources and tap water have led to concerns about the efficacy of current drinking water treatment processes to remove these contaminants. It is hypothesized that drinking water resources contain nanoplastics (NPs), but the detection of NPs is challenging. We, therefore, used palladium (Pd)-labeled NPs to investigate the behavior and removal of NPs during conventional drinking water treatment processes including ozonation, sand and activated carbon filtration. Ozone doses typically applied in drinking water treatment plants (DWTPs) hardly affect the NPs transport in the subsequent filtration systems. Amongst the different filtration media, NPs particles were most efficiently retained when aged (i.e. biofilm coated) sand was used with good agreements between laboratory and pilot scale systems. The removal of NPs through multiple filtration steps in a municipal full-scale DWTP was simulated using the MNMs software code. Removal efficiencies exceeding 3-log units were modeled for a combination of three consecutive filtration steps (rapid sand filtration, activated carbon filtration and slow sand filtration with 0.4-, 0.2- and 3.0-log-removal, respectively). According to the results from the model, the removal of NPs during slow sand filtration dominated the overall NPs removal which is also supported by the laboratory-scale and pilot-scale data. The results from this study can be used to estimate the NPs removal efficiency of typical DWTPs with similar water treatment chains.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Charcoal , Filtration , Microplastics , Plastics , Sand , Water Pollutants, Chemical/analysis , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...