Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Nucl Cardiol ; 31: 101777, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38237365

ABSTRACT

OBJECTIVE: To elucidate the value of gated SPECT-MPI using CT attenuation correction (AC) for prediction of pulmonary hypertension (PHT) in coronary patients by estimation of reliability of non-contrast CT in measurement of main pulmonary artery diameter (MPAd) as well as by assessment of potential predictive role of gated parameters as beneficial accessory findings. BACKGROUND: Contrast-enhanced CT is known as an accurate tool for assessment of MPAd to predict PHT. [1] The low-dose non-contrast CT which is used for AC in MPI study, however, has an unclear value in precise vascular diameter measurement; it is also uncertain whether gated parameters could help to predict PHT. METHODS AND PATIENTS: A total of 207 patients, who had a transthoracic echocardiography and MPI with an interval of maximum one month, underwent this retrospective study. PHT was defined as a RVSP ≥36 mmHg by echocardiography; peak tricuspid regurgitation velocity (PTRV) was also calculated to use as a criterion for PHT. Of all subjects, 120 had RVSP ≥ 36 and 87 showed RVSP < 36; there also were 191 and 16 patients with PTRV ≤ 3.4 m/s and >3.4 m/s, respectively. Comparison was made unconnectedly between each group regarding the echocardiography results with the MPI parameters, with and without CT-AC, including MPAd derived from CT as well as RV/LV uptake ratio, shape index and septal wall motion and thickening scores to define the best indicators of PHT. RESULTS: There was a significant association between established benchmark of PHT in echocardiography (RVSP), with MPAd derived from non-contrast CT as well as with LV shape index from gated study and RV/LV uptake ratio acquired from non-AC SPECT-MPI. Also, stress and rest RV/LV uptake ratio, MPAd, LV end-systolic and LV end-diastolic shape indexes are significantly higher in patients with RVSP ≥ 36 mmHg compare to patients with RVSP < 36 mmHg. CONCLUSIONS: Gated-SPECT-MPI using CT-AC can predict PHT by reliable estimation of MPAd as well as by defining RV/LV uptake ratio and shape index, providing an added clinical value for this invaluable modality in cardiac patients.


Subject(s)
Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/diagnostic imaging , Retrospective Studies , Reproducibility of Results , Tomography, Emission-Computed, Single-Photon/methods , Single Photon Emission Computed Tomography Computed Tomography
2.
Med Phys ; 51(1): 319-333, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37475591

ABSTRACT

BACKGROUND: PET/CT images combining anatomic and metabolic data provide complementary information that can improve clinical task performance. PET image segmentation algorithms exploiting the multi-modal information available are still lacking. PURPOSE: Our study aimed to assess the performance of PET and CT image fusion for gross tumor volume (GTV) segmentations of head and neck cancers (HNCs) utilizing conventional, deep learning (DL), and output-level voting-based fusions. METHODS: The current study is based on a total of 328 histologically confirmed HNCs from six different centers. The images were automatically cropped to a 200 × 200 head and neck region box, and CT and PET images were normalized for further processing. Eighteen conventional image-level fusions were implemented. In addition, a modified U2-Net architecture as DL fusion model baseline was used. Three different input, layer, and decision-level information fusions were used. Simultaneous truth and performance level estimation (STAPLE) and majority voting to merge different segmentation outputs (from PET and image-level and network-level fusions), that is, output-level information fusion (voting-based fusions) were employed. Different networks were trained in a 2D manner with a batch size of 64. Twenty percent of the dataset with stratification concerning the centers (20% in each center) were used for final result reporting. Different standard segmentation metrics and conventional PET metrics, such as SUV, were calculated. RESULTS: In single modalities, PET had a reasonable performance with a Dice score of 0.77 ± 0.09, while CT did not perform acceptably and reached a Dice score of only 0.38 ± 0.22. Conventional fusion algorithms obtained a Dice score range of [0.76-0.81] with guided-filter-based context enhancement (GFCE) at the low-end, and anisotropic diffusion and Karhunen-Loeve transform fusion (ADF), multi-resolution singular value decomposition (MSVD), and multi-level image decomposition based on latent low-rank representation (MDLatLRR) at the high-end. All DL fusion models achieved Dice scores of 0.80. Output-level voting-based models outperformed all other models, achieving superior results with a Dice score of 0.84 for Majority_ImgFus, Majority_All, and Majority_Fast. A mean error of almost zero was achieved for all fusions using SUVpeak , SUVmean and SUVmedian . CONCLUSION: PET/CT information fusion adds significant value to segmentation tasks, considerably outperforming PET-only and CT-only methods. In addition, both conventional image-level and DL fusions achieve competitive results. Meanwhile, output-level voting-based fusion using majority voting of several algorithms results in statistically significant improvements in the segmentation of HNC.


Subject(s)
Head and Neck Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Algorithms , Head and Neck Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods
3.
Eur J Nucl Med Mol Imaging ; 51(1): 40-53, 2023 12.
Article in English | MEDLINE | ID: mdl-37682303

ABSTRACT

PURPOSE: Image artefacts continue to pose challenges in clinical molecular imaging, resulting in misdiagnoses, additional radiation doses to patients and financial costs. Mismatch and halo artefacts occur frequently in gallium-68 (68Ga)-labelled compounds whole-body PET/CT imaging. Correcting for these artefacts is not straightforward and requires algorithmic developments, given that conventional techniques have failed to address them adequately. In the current study, we employed differential privacy-preserving federated transfer learning (FTL) to manage clinical data sharing and tackle privacy issues for building centre-specific models that detect and correct artefacts present in PET images. METHODS: Altogether, 1413 patients with 68Ga prostate-specific membrane antigen (PSMA)/DOTA-TATE (TOC) PET/CT scans from 3 countries, including 8 different centres, were enrolled in this study. CT-based attenuation and scatter correction (CT-ASC) was used in all centres for quantitative PET reconstruction. Prior to model training, an experienced nuclear medicine physician reviewed all images to ensure the use of high-quality, artefact-free PET images (421 patients' images). A deep neural network (modified U2Net) was trained on 80% of the artefact-free PET images to utilize centre-based (CeBa), centralized (CeZe) and the proposed differential privacy FTL frameworks. Quantitative analysis was performed in 20% of the clean data (with no artefacts) in each centre. A panel of two nuclear medicine physicians conducted qualitative assessment of image quality, diagnostic confidence and image artefacts in 128 patients with artefacts (256 images for CT-ASC and FTL-ASC). RESULTS: The three approaches investigated in this study for 68Ga-PET imaging (CeBa, CeZe and FTL) resulted in a mean absolute error (MAE) of 0.42 ± 0.21 (CI 95%: 0.38 to 0.47), 0.32 ± 0.23 (CI 95%: 0.27 to 0.37) and 0.28 ± 0.15 (CI 95%: 0.25 to 0.31), respectively. Statistical analysis using the Wilcoxon test revealed significant differences between the three approaches, with FTL outperforming CeBa and CeZe (p-value < 0.05) in the clean test set. The qualitative assessment demonstrated that FTL-ASC significantly improved image quality and diagnostic confidence and decreased image artefacts, compared to CT-ASC in 68Ga-PET imaging. In addition, mismatch and halo artefacts were successfully detected and disentangled in the chest, abdomen and pelvic regions in 68Ga-PET imaging. CONCLUSION: The proposed approach benefits from using large datasets from multiple centres while preserving patient privacy. Qualitative assessment by nuclear medicine physicians showed that the proposed model correctly addressed two main challenging artefacts in 68Ga-PET imaging. This technique could be integrated in the clinic for 68Ga-PET imaging artefact detection and disentanglement using multicentric heterogeneous datasets.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Artifacts , Gallium Radioisotopes , Privacy , Positron-Emission Tomography/methods , Machine Learning , Image Processing, Computer-Assisted/methods
4.
Z Med Phys ; 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36932023

ABSTRACT

PURPOSE: Whole-body bone scintigraphy (WBS) is one of the most widely used modalities in diagnosing malignant bone diseases during the early stages. However, the procedure is time-consuming and requires vigour and experience. Moreover, interpretation of WBS scans in the early stages of the disorders might be challenging because the patterns often reflect normal appearance that is prone to subjective interpretation. To simplify the gruelling, subjective, and prone-to-error task of interpreting WBS scans, we developed deep learning (DL) models to automate two major analyses, namely (i) classification of scans into normal and abnormal and (ii) discrimination between malignant and non-neoplastic bone diseases, and compared their performance with human observers. MATERIALS AND METHODS: After applying our exclusion criteria on 7188 patients from three different centers, 3772 and 2248 patients were enrolled for the first and second analyses, respectively. Data were split into two parts, including training and testing, while a fraction of training data were considered for validation. Ten different CNN models were applied to single- and dual-view input (posterior and anterior views) modes to find the optimal model for each analysis. In addition, three different methods, including squeeze-and-excitation (SE), spatial pyramid pooling (SPP), and attention-augmented (AA), were used to aggregate the features for dual-view input models. Model performance was reported through area under the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, and specificity and was compared with the DeLong test applied to ROC curves. The test dataset was evaluated by three nuclear medicine physicians (NMPs) with different levels of experience to compare the performance of AI and human observers. RESULTS: DenseNet121_AA (DensNet121, with dual-view input aggregated by AA) and InceptionResNetV2_SPP achieved the highest performance (AUC = 0.72) for the first and second analyses, respectively. Moreover, on average, in the first analysis, Inception V3 and InceptionResNetV2 CNN models and dual-view input with AA aggregating method had superior performance. In addition, in the second analysis, DenseNet121 and InceptionResNetV2 as CNN methods and dual-view input with AA aggregating method achieved the best results. Conversely, the performance of AI models was significantly higher than human observers for the first analysis, whereas their performance was comparable in the second analysis, although the AI model assessed the scans in a drastically lower time. CONCLUSION: Using the models designed in this study, a positive step can be taken toward improving and optimizing WBS interpretation. By training DL models with larger and more diverse cohorts, AI could potentially be used to assist physicians in the assessment of WBS images.

5.
Phys Med Biol ; 68(3)2023 01 19.
Article in English | MEDLINE | ID: mdl-36595257

ABSTRACT

Objectives.Parkinson's disease (PD) is a complex neurodegenerative disorder, affecting 2%-3% of the elderly population. Montreal Cognitive Assessment (MoCA), a rapid nonmotor screening test, assesses different cognitive dysfunctionality aspects. Early MoCA prediction may facilitate better temporal therapy and disease control. Radiomics features (RF), in addition to clinical features (CF), are indicated to increase clinical diagnoses, etc, bridging between medical imaging procedures and personalized medicine. We investigate the effect of RFs, CFs, and conventional imaging features (CIF) to enhance prediction performance using hybrid machine learning systems (HMLS).Methods.We selected 210 patients with 981 features (CFs, CIFs, and RFs) from the Parkinson's Progression-Markers-Initiative database. We generated 4 datasets, namely using (i), (ii) year-0 (D1) or year-1 (D2) features, (iii) longitudinal data (D3, putting datasets in years 0 and 1 longitudinally next to each other), and (iv) timeless data (D4, effectively doubling dataset size by listing both datasets from years 0 and 1 separately). First, we directly applied 23 predictor algorithms (PA) to the datasets to predict year-4 MoCA, which PD patients this year have a higher dementia risk. Subsequently, HMLSs, including 14 attribute extraction and 10 feature selection algorithms followed by PAs were employed to enhance prediction performances. 80% of all datapoints were utilized to select the best model based on minimum mean absolute error (MAE) resulting from 5-fold cross-validation. Subsequently, the remaining 20% was used for hold-out testing of the selected models.Results.When applying PAs without ASAs/FEAs to datasets (MoCA outcome range: [11,30]), Adaboost achieved an MAE of 1.74 ± 0.29 on D4 with a hold-out testing performance of 1.71. When employing HMLSs, D4 + Minimum_Redundancy_Maximum_Relevance (MRMR)+K_Nearest_Neighbor Regressor achieved the highest performance of 1.05 ± 0.25 with a hold-out testing performance of 0.57.Conclusion.Our study shows the importance of using larger datasets (timeless), and utilizing optimized HMLSs, for significantly improved prediction of MoCA in PD patients.


Subject(s)
Parkinson Disease , Humans , Aged , Parkinson Disease/diagnostic imaging , Algorithms , Machine Learning
6.
Nucl Med Mol Imaging ; 56(5): 256-258, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36310831

ABSTRACT

The 18F-FDG PET/CT imaging is a non-invasive modality for diagnosis and staging of metastatic melanoma. Venous thromboembolism (VTE) is a common complication of cancers, which needs anticoagulant therapy. Tumor thrombosis (TT), on the other hand, is an infrequent complication of solid malignancies that may need aggressive management. Accurate diagnosis of TT and its differentiation from VTE may change patient management and avoid unnecessary anticoagulation treatment. The objective of this case is to introduce a patient with malignant melanoma presenting with extensive venous tumor thrombi with intense FDG uptake.

SELECTION OF CITATIONS
SEARCH DETAIL
...