Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 283: 131102, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34146872

ABSTRACT

Arsenic (As) and cadmium (Cd) are unnecessary metal(loids) toxic at high concentration to plants and humans, hence lessening their rice grain accumulation is crucial for food security and human healthiness. Charred eggshell (EB), corncob biochar (CB), and eggshell-corncob biochar (ECB) were produced and amended to As and Cd co-polluted paddy soil at 1% and 2% application rates to alleviate the metal(loids) contents in rice grains using pot experiments. All the amendments increased paddy yields at 1%, while EB at 2% significantly reduced the yields compared to untreated control. The resulting yield loss in 2%EB was from the combined effects of its high CaCO3 supplementation, and the increment of rhizosphere soil pH which could insolubilize plant nutrients. The amendments were inefficient in decreasing rice grain As (AsGrain), but all the treatments significantly reduced the rice grain Cd (CdGrain) at both 1% (44.4-77.1%) and 2% (79.8-91.5%) application rates compared to that of control. Regression analysis for contribution weights of control factors revealed that rhizosphere soil Eh and pH were vital influential factors regulating the AsGrain, whereas porewater Cd was main factor controlling CdGrain accumulation. These investigations indicated that the Ca-enriched eggshell-corncob biochar even at high application rate (i.e., 2%ECB) could be a potential tactic for grain accumulation remediation of the cationic pollutant (i.e., Cd) from the paddy soil to rice grain scheme with concurrent increase in rice yields.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Cadmium/analysis , Calcium , Charcoal , Humans , Soil , Soil Pollutants/analysis
2.
Sci Total Environ ; 785: 147163, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33940407

ABSTRACT

Arsenic (As) and cadmium (Cd) are nonessential toxic metal(loids) that are carcinogenic to humans. Hence, reducing the bioavailability of these metal(loids) in soils and decreasing their accumulation in rice grains is essential for agroecology, food safety, and human health. Iron (Fe)-enriched corncob biochar (FCB), Fe-enriched charred eggshell (FEB), and Fe-enriched corncob-eggshell biochar (FCEB) were prepared for soil amelioration. The amendment materials were applied at 1% and 2% application rates to observe their alleviation effects on As and Cd loads in rice paddy tissues and yield improvements using pot trials. The FCEB treatment increased paddy yields compared to those of FCB (9-12%) and FEB (3-36%); this could be because it contains more plant essential nutrients than FCB and a lower calcite content than that of FEB. In addition, FCEB significantly reduced brown rice As (AsBR, 29-60%) and Cd (CdBR, 57-81%) contents compared to those of the untreated control (CON). At a 2% application rate, FCEB reduced the average mobility of As (56%) and Cd (62%) in rhizosphere porewater and enhanced root Fe-plaque formation (76%) compared to those of CON. Moreover, the enhanced Fe-plaque sequestered a substantial amount of As (171.4%) and Cd (90.8%) in the 2% FCEB amendment compared to that of CON. Pearson correlation coefficients and regression analysis indicated that two key mechanisms likely control AsBR and CdBR accumulations. First, rhizosphere soil pH and Eh controlled As and Cd availabilities in porewaters and their speciation in the soil. Second, greater Fe-plaque formation in paddy roots grown in the amended soils provided a barrier for plant uptake of the metal(loids). These observations demonstrate that soil amendment with Fe-enriched corncob-eggshell biochar (e.g., 2% FCEB) is a prospective approach for the remediation of metal accumulation from the soil to grain system while simultaneously increasing paddy yield.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Cadmium/analysis , Calcium , Charcoal , Humans , Iron/analysis , Soil , Soil Pollutants/analysis
3.
J Environ Sci (China) ; 100: 144-157, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33279027

ABSTRACT

Zero-valent iron amended biochar (ZVIB) has been proposed as a promising material in immobilizing heavy metals in paddy fields. In this study, the impacts of pH of ZVIB (pH 6.3 and pH 9.7) and watering management techniques (watering amount in the order of CON (control, 5/72)>3/72>1-3/72>3/100>1/72, with 5/72, for example, representing irrigation given to 5 cm above soil surface in 72 hr regular interval) on As and Cd bioavailability for rice and its grain yield (YieldBR) were investigated in a pot experiment. Brown rice As (AsBR) content was irrelative to the watering treatments, while significantly decreased (>50%) with the addition of both ZVIB materials. The diminutions of brown rice Cd (CdBR) content as well as the YieldBR were highly dependent on both the soil amendment materials' pH and watering amount. Among all the watering treatments, 3/72 treatment (15% less irrigation water than the CON) with ZVIB 6.3 amendment was the optimum fit for simultaneous reduction of AsBR (50%) and CdBR contents (19%) as well as for significant increment (12%) of the YieldBR. Although high pH (9.7) ZVIB application could also efficiently decrease As and Cd contents in brown rice, it might risk grain yield lost if appropriate (e.g. 3/72 in our study) watering management technique was not chosen. Therefore, ZVIB would be an environmentally friendly option as an amendment material with proper selection of watering management technique to utilize As and Cd co-contaminated arable soils safely for paddy cultivation.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Charcoal , Hydrogen-Ion Concentration , Iron , Rhizosphere , Soil , Soil Pollutants/analysis , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...