Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Neurotrauma ; 36(11): 1836-1846, 2019 06.
Article in English | MEDLINE | ID: mdl-30489198

ABSTRACT

Cannabis is one of the most widely used plant drugs in the world today. In spite of the large number of scientific reports on medical marijuana, there still exists much controversy surrounding its use and the potential for abuse due to the undesirable psychotropic effects. However, recent developments in medicinal chemistry of novel non-psychoactive synthetic cannabinoids have indicated that it is possible to separate some of the therapeutic effects from the psychoactivity. We have previously shown that treatment with the endocannabinoid 2-AG, which binds to both CB1 and CB2 receptors 1 h after traumatic brain injury in mice, attenuates neurological deficits, edema formation, infarct volume, blood-brain barrier permeability, neuronal cell loss at the CA3 hippocampal region, and neuroinflammation. Recently, we synthesized a set of camphor-resorcinol derivatives, which represent a novel series of CB2 receptor selective ligands. Most of the novel compounds exhibited potent binding and agonistic properties at the CB2 receptors with very low affinity for the CB1 receptor, and some were highly anti-inflammatory. This selective binding correlated with their intrinsic activities. HU-910 and HU-914 were selected in the present study to evaluate their potential effect in the pathophysiology of traumatic brain injury (TBI). In mice and rats subjected to closed-head injury and treated with these novel compounds, we showed enhanced neurobehavioral recovery, inhibition of tumor necrosis factor α production, increased synaptogenesis, and partial recovery of the cortical spinal tract. We propose these CB2 agonists as potential drugs for development of novel therapeutic modality to TBI.


Subject(s)
Brain Injuries, Traumatic/metabolism , Receptor, Cannabinoid, CB2/metabolism , Recovery of Function/physiology , Animals , Brain Injuries, Traumatic/physiopathology , Bridged Bicyclo Compounds/pharmacology , Mice , Rats , Receptor, Cannabinoid, CB2/drug effects , Recovery of Function/drug effects
2.
Br J Pharmacol ; 165(8): 2462-78, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21449982

ABSTRACT

BACKGROUND AND PURPOSE: Cannabinoid CB(2) receptor activation has been reported to attenuate myocardial, cerebral and hepatic ischaemia-reperfusion (I/R) injury. EXPERIMENTAL APPROACH: We have investigated the effects of a novel CB(2) receptor agonist ((1S,4R)-2-(2,6-dimethoxy-4-(2-methyloctan-2-yl)phenyl)-7,7-dimethylbicyclo[2.2.1]hept-2-en-1-yl)methanol (HU-910) on liver injury induced by 1 h of ischaemia followed by 2, 6 or 24 h of reperfusion, using a well-established mouse model of segmental hepatic I/R. KEY RESULTS: Displacement of [(3) H]CP55940 by HU-910 from specific binding sites in CHO cell membranes transfected with human CB(2) or CB(1) receptors (hCB(1/2) ) yielded K(i) values of 6 nM and 1.4 µM respectively. HU-910 inhibited forskolin-stimulated cyclic AMP production by hCB(2) CHO cells (EC(50) = 162 nM) and yielded EC(50) of 26.4 nM in [(35) S]GTPγS binding assays using hCB(2) expressing CHO membranes. HU-910 given before ischaemia significantly attenuated levels of I/R-induced hepatic pro-inflammatory chemokines (CCL3 and CXCL2), TNF-α, inter-cellular adhesion molecule-1, neutrophil infiltration, oxidative stress and cell death. Some of the beneficial effect of HU-910 also persisted when given at the beginning of the reperfusion or 1 h after the ischaemic episode. Furthermore, HU-910 attenuated the bacterial endotoxin-triggered TNF-α production in isolated Kupffer cells and expression of adhesion molecules in primary human liver sinusoidal endothelial cells stimulated with TNF-α. Pretreatment with a CB(2) receptor antagonist attenuated the protective effects of HU-910, while pretreatment with a CB(1) antagonist tended to enhance them. CONCLUSION AND IMPLICATIONS: HU-910 is a potent CB(2) receptor agonist which may exert protective effects in various diseases associated with inflammation and tissue injury. LINKED ARTICLES: This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.


Subject(s)
Bridged Bicyclo Compounds/therapeutic use , Protective Agents/therapeutic use , Receptor, Cannabinoid, CB2/agonists , Reperfusion Injury/drug therapy , Alanine Transaminase/blood , Aldehydes/metabolism , Animals , Apoptosis/drug effects , Aspartate Aminotransferases/blood , Bridged Bicyclo Compounds/metabolism , CHO Cells , Cell Death/drug effects , Cell Line , Cricetinae , Cytokines/genetics , DNA Fragmentation , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Intercellular Adhesion Molecule-1/genetics , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Protective Agents/metabolism , RNA, Messenger/metabolism , Receptor, Cannabinoid, CB2/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
3.
Br J Pharmacol ; 163(7): 1402-10, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21418185

ABSTRACT

Traumatic brain injury (TBI) represents the leading cause of death in young individuals. It triggers the accumulation of harmful mediators, leading to secondary damage, yet protective mechanisms are also set in motion. The endocannabinoid (eCB) system consists of ligands, such as anandamide and 2-arachidonoyl-glycerol (2-AG), receptors (e.g. CB1, CB2), transporters and enzymes, which are responsible for the 'on-demand' synthesis and degradation of these lipid mediators. There is a large body of evidence showing that eCB are markedly increased in response to pathogenic events. This fact, as well as numerous studies on experimental models of brain toxicity, neuroinflammation and trauma supports the notion that the eCB are part of the brain's compensatory or repair mechanisms. These are mediated via CB receptors signalling pathways that are linked to neuronal survival and repair. The levels of 2-AG, the most highly abundant eCB, are significantly elevated after TBI and when administered to TBI mice, 2-AG decreases brain oedema, inflammation and infarct volume and improves clinical recovery. The role of CB1 in mediating these effects was demonstrated using selective antagonists or CB1 knockout mice. CB2 were shown in other models of brain insults to reduce white blood cell rolling and adhesion, to reduce infarct size and to improve motor function. This review is focused on the role the eCB system plays as a self-neuroprotective mechanism and its potential as a basis for the development of novel therapeutic modality for the treatment of CNS pathologies with special emphasis on TBI.


Subject(s)
Brain Injuries/metabolism , Brain/metabolism , Cannabinoid Receptor Modulators/metabolism , Endocannabinoids , Receptors, Cannabinoid/metabolism , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...