Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nutrients ; 12(3)2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32183350

ABSTRACT

Overweight and obesity accompanies up to 70% of pregnancies and is a strong risk factor for offspring metabolic disease. Maternal obesity-associated inflammation and lipid profile are hypothesized as important contributors to excess offspring liver and skeletal muscle lipid deposition and oxidative stress. Here, we tested whether dams expressing the fat-1 transgene, which endogenously converts omega-6 (n-6) to omega-3 (n-3) polyunsaturated fatty acid, could protect wild-type (WT) offspring against high-fat diet induced weight gain, oxidative stress, and disrupted mitochondrial fatty acid oxidation. Despite similar body mass at weaning, offspring from fat-1 high-fat-fed dams gained less weight compared with offspring from WT high-fat-fed dams. In particular, WT males from fat-1 high-fat-fed dams were protected from post-weaning high-fat diet induced weight gain, reduced fatty acid oxidation, or excess oxidative stress compared with offspring of WT high-fat-fed dams. Adult offspring of WT high-fat-fed dams exhibited greater skeletal muscle triglycerides and reduced skeletal muscle antioxidant defense and redox balance compared with offspring of WT dams on control diet. Fat-1 offspring were protected from the reduced fatty acid oxidation and excess oxidative stress observed in offspring of WT high-fat-fed dams. These results indicate that a maternal fat-1 transgene has protective effects against offspring liver and skeletal muscle lipotoxicity resulting from a maternal high-fat diet, particularly in males. Altering maternal fatty acid composition, without changing maternal dietary composition or weight gain with high-fat feeding, may highlight important strategies for n-3-based prevention of developmental programming of obesity and its complications.


Subject(s)
Caenorhabditis elegans Proteins , Diet, High-Fat/adverse effects , Fatty Acid Desaturases , Maternal Exposure , Obesity , Oxidative Stress/genetics , Transgenes , Animals , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Fatty Acid Desaturases/biosynthesis , Fatty Acid Desaturases/genetics , Female , Male , Mice , Mice, Transgenic , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Obesity/prevention & control , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...