Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 6(26): 22310-27, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26247631

ABSTRACT

Freshly isolated human primary NK cells induce preferential lysis of Oral Squamous Carcinoma Stem Cells (OSCSCs) when compared to differentiated Oral Squamous Carcinoma Cells (OSCCs), while anti-CD16 antibody and monocytes induce functional split anergy in primary NK cells by decreasing the cytotoxic function of NK cells and increasing the release of IFN-γ. Since NK92 cells have relatively lower levels of cytotoxicity when compared to primary NK cells, and have the ability to increase secretion of regulatory cytokines IL-10 and IL-6, we used these cells as a model of NK cell anergy to identify and to study the upstream regulators of anergy. We demonstrate in this paper that the levels of truncated monomeric cystatin F, which is known to inhibit the functions of cathepsins C and H, is significantly elevated in NK92 cells and in anergized primary NK cells. Furthermore, cystatin F co-localizes with cathepsins C and H in the lysosomal/endosomal vesicles of NK cells. Accordingly, the mature forms of aminopeptidases cathepsins C and H, which regulate the activation of effector granzymes in NK cells, are significantly decreased, whereas the levels of pro-cathepsin C enzyme is increased in anergized NK cells after triggering of the CD16 receptor. In addition, the levels of granzyme B is significantly decreased in anti-CD16mAb and target cell anergized primary NK cells and NK92 cells. Our study provides the cellular and molecular mechanisms by which target cells may utilize to inhibit the cytotoxic function of NK cells.


Subject(s)
Biomarkers, Tumor/immunology , Cathepsin C/immunology , Cathepsin H/immunology , Cystatins/immunology , Killer Cells, Natural/immunology , Cell Differentiation/immunology , Cell Line, Tumor , Clonal Anergy , Humans , Killer Cells, Natural/cytology
2.
J Cancer ; 4(1): 45-56, 2013.
Article in English | MEDLINE | ID: mdl-23386904

ABSTRACT

Cystatins comprise a large superfamily of related proteins with diverse biological activities. They were initially characterised as inhibitors of lysosomal cysteine proteases, however, in recent years some alternative functions for cystatins have been proposed. Cystatins possessing inhibitory function are members of three families, family I (stefins), family II (cystatins) and family III (kininogens). Stefin A is often linked to neoplastic changes in epithelium while another family I cystatin, stefin B is supposed to have a specific role in neuredegenerative diseases. Cystatin C, a typical type II cystatin, is expressed in a variety of human tissues and cells. On the other hand, expression of other type II cystatins is more specific. Cystatin F is an endo/lysosome targeted protease inhibitor, selectively expressed in immune cells, suggesting its role in processes related to immune response. Our recent work points on its role in regulation of dendritic cell maturation and in natural killer cells functional inactivation that may enhance tumor survival. Cystatin E/M expression is mainly restricted to the epithelia of the skin which emphasizes its prominent role in cutaneous biology. Here, we review the current knowledge on type I (stefins A and B) and type II cystatins (cystatins C, F and E/M) in pathologies, with particular emphasis on their suppressive vs. promotional function in the tumorigenesis and metastasis. We proposed that an imbalance between cathepsins and cystatins may attenuate immune cell functions and facilitate tumor cell invasion.

3.
J Biol Chem ; 287(13): 10602-10612, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22298779

ABSTRACT

Lectins are carbohydrate-binding proteins that exert their biological activity by binding to specific cell glycoreceptors. We have expressed CNL, a ricin B-like lectin from the basidiomycete Clitocybe nebularis in Escherichia coli. The recombinant lectin, rCNL, agglutinates human blood group A erythrocytes and is specific for the unique glycan N,N'-diacetyllactosediamine (GalNAcß1-4GlcNAc, LacdiNAc) as demonstrated by glycan microarray analysis. We here describe the crystal structures of rCNL in complex with lactose and LacdiNAc, defining its interactions with the sugars. CNL is a homodimeric lectin, each of whose monomers consist of a single ricin B lectin domain with its ß-trefoil fold and one carbohydrate-binding site. To study the mode of CNL action, a nonsugar-binding mutant and nondimerizing monovalent CNL mutants that retain carbohydrate-binding activity were prepared. rCNL and the mutants were examined for their biological activities against Jurkat human leukemic T cells and the hypersensitive nematode Caenorhabditis elegans mutant strain pmk-1. rCNL was toxic against both, although the mutants were inactive. Thus, the bivalent carbohydrate-binding property of homodimeric CNL is essential for its activity, providing one of the rare pieces of evidence that certain activities of lectins are associated with their multivalency.


Subject(s)
Lactose/analogs & derivatives , Ricin/chemistry , ABO Blood-Group System/chemistry , ABO Blood-Group System/genetics , ABO Blood-Group System/metabolism , Agaricales , Amino Acid Sequence , Animals , Caenorhabditis elegans/metabolism , Crystallography, X-Ray , Erythrocytes/chemistry , Erythrocytes/metabolism , Escherichia coli/genetics , Humans , Jurkat Cells , Lactose/chemistry , Lactose/genetics , Lactose/metabolism , Molecular Sequence Data , Mutation , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/toxicity , Ricin/genetics , Ricin/metabolism , Ricin/toxicity
4.
Eur J Cell Biol ; 91(5): 391-401, 2012 May.
Article in English | MEDLINE | ID: mdl-22365146

ABSTRACT

In dendritic cells (DCs) cysteine cathepsins play a key role in antigen processing, invariant chain (Ii) cleavage and regulation of cell adhesion after maturation stimuli. Cystatin F, a cysteine protease inhibitor, is present in DCs in endosomal/lysosomal vesicles and thus has a potential to modulate cathepsin activity. In immature DCs cystatin F colocalizes with cathepsin S. After induction of DC maturation however, it is translocated into lysosomes and colocalizes with cathepsin L. The inhibitory potential of cystatin F depends on the properties of the monomer. We showed that the full-length monomeric cystatin F was a 12-fold stronger inhibitor of cathepsin S than the N-terminally processed cystatin F, whereas no significant difference in inhibition was observed for cathepsins L, H and X. Therefore, the role of cystatin F in regulating the main cathepsin S function in DCs, i.e. the processing of Ii, may depend on the form of the monomer present in endosomal/lysosomal vesicles. On the other hand, intact and truncated monomeric cystatin F are both potent inhibitors of cathepsin L and it is likely that cystatin F could regulate its activity in maturing, adherent DCs, controlling the processing of procathepsin X, which promotes cell adhesion via activation of Mac-1 (CD11b/CD18) integrin receptor.


Subject(s)
Biomarkers, Tumor/metabolism , Cathepsin L/metabolism , Cathepsins/metabolism , Cystatins/metabolism , Dendritic Cells/metabolism , Endosomes/metabolism , Lysosomes/metabolism , Cell Adhesion/physiology , Cells, Cultured , Dendritic Cells/cytology , Female , Humans , Macrophage-1 Antigen/metabolism , Male
5.
Eur J Cell Biol ; 88(8): 461-71, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19446361

ABSTRACT

Cathepsin X, a cysteine protease, has been shown to regulate an immune response by activating beta-2 integrin receptors. In this study we demonstrate its role in regulating the immune response to infection with H. pylori. The level of cathepsin X was determined in THP-1 monocyte cells primed with H. pylori antigens isolated from subjects suffering from gastritis, who had either eradicated or not the disease after the antibiotic therapy. We show that the specific clinical outcome of H. pylori eradication therapy correlates strongly with the membrane expression of cathepsin X in stimulated THP-1 cells, being significantly higher after stimulation with H. pylori strains from those subjects who did not respond to antibiotic therapy. The same antigens elicit a more vigorous immune response, increased expression of MHC II, however trigger inadequate cytokine profile (IFN-gamma and IL-4) to eradicate the pathogen. We propose that cathepsin X mediated activation of beta-2 integrin receptor Mac-1 suppresses the stimulatory signal in the form of cytokines. Cathepsin X co-localizes on the membrane of THP-1 cells with Mac-1 integrin receptor and its inhibition increases homotypic aggregation and mononuclear cell proliferation, events that are associated with low Mac-1 activity. Our study highlights the diversity of the innate immune response to H. pylori antigens leading to either successful eradication of the infection or maintenance of chronic inflammation, revealing cathepsin X location and activity as a regulator of the effectiveness of H. pylori eradication.


Subject(s)
Cathepsins , Helicobacter Infections/immunology , Helicobacter Infections/metabolism , Helicobacter pylori/immunology , Anti-Bacterial Agents/therapeutic use , Cathepsin K , Cathepsins/immunology , Cathepsins/metabolism , Cell Proliferation , Drug Resistance, Bacterial , Genes, MHC Class II , Helicobacter Infections/drug therapy , Helicobacter pylori/drug effects , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Interleukin-4/biosynthesis , Interleukin-4/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocyte Function-Associated Antigen-1/biosynthesis , Lymphocyte Function-Associated Antigen-1/immunology , Macrophage-1 Antigen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...