Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Nat Commun ; 9(1): 1769, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29720620

ABSTRACT

Multidrug resistant Plasmodium falciparum in Southeast Asia endangers regional malaria elimination and threatens to spread to other malaria endemic areas. Understanding mechanisms of piperaquine (PPQ) resistance is crucial for tracking its emergence and spread, and to develop effective strategies for overcoming it. Here we analyze a mechanism of PPQ resistance in Cambodian parasites. Isolates exhibit a bimodal dose-response curve when exposed to PPQ, with the area under the curve quantifying their survival in vitro. Increased copy number for plasmepsin II and plasmepsin III appears to explain enhanced survival when exposed to PPQ in most, but not all cases. A panel of isogenic subclones reinforces the importance of plasmepsin II-III copy number to enhanced PPQ survival. We conjecture that factors producing increased parasite survival under PPQ exposure in vitro may drive clinical PPQ failures in the field.


Subject(s)
Aspartic Acid Endopeptidases/genetics , Drug Resistance/genetics , Gene Dosage , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Quinolines/pharmacology , Antimalarials/pharmacology , Aspartic Acid Endopeptidases/metabolism , Cambodia , Cell Survival/drug effects , Cell Survival/genetics , DNA Copy Number Variations , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Plasmodium falciparum/cytology , Plasmodium falciparum/genetics , Protozoan Proteins/metabolism , Whole Genome Sequencing
2.
Science ; 359(6372): 191-199, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29326268

ABSTRACT

Chemogenetic characterization through in vitro evolution combined with whole-genome analysis can identify antimalarial drug targets and drug-resistance genes. We performed a genome analysis of 262 Plasmodium falciparum parasites resistant to 37 diverse compounds. We found 159 gene amplifications and 148 nonsynonymous changes in 83 genes associated with drug-resistance acquisition, where gene amplifications contributed to one-third of resistance acquisition events. Beyond confirming previously identified multidrug-resistance mechanisms, we discovered hitherto unrecognized drug target-inhibitor pairs, including thymidylate synthase and a benzoquinazolinone, farnesyltransferase and a pyrimidinedione, and a dipeptidylpeptidase and an arylurea. This exploration of the P. falciparum resistome and druggable genome will likely guide drug discovery and structural biology efforts, while also advancing our understanding of resistance mechanisms available to the malaria parasite.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Genome, Protozoan , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Activation, Metabolic , Alleles , DNA Copy Number Variations , Directed Molecular Evolution , Drug Resistance, Multiple/genetics , Genes, Protozoan , Metabolomics , Mutation , Plasmodium falciparum/growth & development , Selection, Genetic , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Malar J ; 16(1): 195, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28494763

ABSTRACT

BACKGROUND: Artemisinin resistance is associated with delayed parasite clearance half-life in vivo and correlates with ring-stage survival under dihydroartemisinin in vitro. Both phenotypes are associated with mutations in the PF3D7_1343700 pfkelch13 gene. Recent spread of artemisinin resistance and emerging piperaquine resistance in Southeast Asia show that artemisinin combination therapy, such as dihydroartemisinin-piperaquine, are losing clinical effectiveness, prompting investigation of drug resistance mechanisms and development of strategies to surmount emerging anti-malarial resistance. METHODS: Sixty-eight parasites isolates with in vivo clearance data were obtained from two Tracking Resistance to Artemisinin Collaboration study sites in Cambodia, culture-adapted, and genotyped for pfkelch13 and other mutations including pfmdr1 copy number; and the RSA0-3h survival rates and response to antimalarial drugs in vitro were measured for 36 of these isolates. RESULTS: Among these 36 parasites one isolate demonstrated increased ring-stage survival for a PfKelch13 mutation (D584V, RSA0-3h = 8%), previously associated with slow clearance but not yet tested in vitro. Several parasites exhibited increased ring-stage survival, yet lack pfkelch13 mutations, and one isolate showed evidence for piperaquine resistance. CONCLUSIONS: This study of 68 culture-adapted Plasmodium falciparum clinical isolates from Cambodia with known clearance values, associated the D584V PfKelch13 mutation with increased ring-stage survival and identified parasites that lack pfkelch13 mutations yet exhibit increased ring-stage survival. These data suggest mutations other than those found in pfkelch13 may be involved in conferring artemisinin resistance in P. falciparum. Piperaquine resistance was also detected among the same Cambodian samples, consistent with reports of emerging piperaquine resistance in the field. These culture-adapted parasites permit further investigation of mechanisms of both artemisinin and piperaquine resistance and development of strategies to prevent or overcome anti-malarial resistance.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Cambodia , Mutation , Plasmodium falciparum/genetics , Protozoan Proteins/metabolism
4.
ACS Infect Dis ; 2(11): 816-826, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27933786

ABSTRACT

MMV007564 is a novel antimalarial benzimidazolyl piperidine chemotype identified in cellular screens. To identify the genetic determinant of MMV007564 resistance, parasites were cultured in the presence of the compound to generate resistant lines. Whole genome sequencing revealed distinct mutations in the gene named Plasmodium falciparum cyclic amine resistance locus (pfcarl), encoding a conserved protein of unknown function. Mutations in pfcarl are strongly associated with resistance to a structurally unrelated class of compounds, the imidazolopiperazines, including KAF156, currently in clinical trials. Our data demonstrate that pfcarl mutations confer resistance to two distinct compound classes, benzimidazolyl piperidines and imidazolopiperazines. However, MMV007564 and the imidazolopiperazines, KAF156 and GNF179, have different timings of action in the asexual blood stage and different potencies against the liver and sexual blood stages. These data suggest that pfcarl is a multidrug-resistance gene rather than a common target for benzimidazolyl piperidines and imidazolopiperazines.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Antimalarials/chemistry , Humans , Life Cycle Stages , Malaria, Falciparum/drug therapy , Mutation , Piperidines/chemistry , Piperidines/pharmacology , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Protozoan Proteins/metabolism
5.
Nat Commun ; 7: 11901, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27301419

ABSTRACT

Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance.


Subject(s)
Drug Resistance , Parasites/physiology , Plasmodium falciparum/physiology , Animals , Antimalarials/pharmacology , Clone Cells , Drug Resistance/drug effects , INDEL Mutation/genetics , Mutation/genetics , Parasites/drug effects , Plasmodium falciparum/drug effects , Polymorphism, Single Nucleotide/genetics
6.
Infect Immun ; 83(8): 3096-103, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26015475

ABSTRACT

Severe malaria syndromes are precipitated by Plasmodium falciparum parasites binding to endothelial receptors on the vascular lining. This binding is mediated by members of the highly variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) family. We have previously identified a subset of PfEMP1 proteins associated with severe malaria and found that the receptor for these PfEMP1 variants is endothelial protein C receptor (EPCR). The binding is mediated through the amino-terminal cysteine-rich interdomain region (CIDR) of the subtypes α1.1 and α1.4 to α1.8. In this study, we investigated the acquisition of anti-CIDR antibodies using plasma samples collected in four study villages with different malaria transmission intensities in northeastern Tanzania during a period with a decline in malaria transmission. We show that individuals exposed to high levels of malaria transmission acquire antibodies to EPCR-binding CIDR domains early in life and that these antibodies are acquired more rapidly than antibodies to other CIDR domains. The rate by which antibodies to EPCR-binding CIDR domains are acquired in populations in areas where malaria is endemic is determined by the malaria transmission intensity, and on a population level, the antibodies are rapidly lost if transmission is interrupted. This indicates that sustained exposure is required to maintain the production of the antibodies.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, CD/immunology , Immunoglobulin G/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Receptors, Cell Surface/immunology , Adolescent , Adult , Antigens, CD/genetics , Child , Child, Preschool , Endothelial Protein C Receptor , Female , Humans , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Male , Middle Aged , Plasmodium falciparum/chemistry , Plasmodium falciparum/genetics , Plasmodium falciparum/physiology , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Receptors, Cell Surface/genetics , Tanzania , Young Adult
7.
Nat Commun ; 6: 6715, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25823686

ABSTRACT

The widespread emergence of Plasmodium falciparum (Pf) strains resistant to frontline agents has fuelled the search for fast-acting agents with novel mechanism of action. Here, we report the discovery and optimization of novel antimalarial compounds, the triaminopyrimidines (TAPs), which emerged from a phenotypic screen against the blood stages of Pf. The clinical candidate (compound 12) is efficacious in a mouse model of Pf malaria with an ED99 <30 mg kg(-1) and displays good in vivo safety margins in guinea pigs and rats. With a predicted half-life of 36 h in humans, a single dose of 260 mg might be sufficient to maintain therapeutic blood concentration for 4-5 days. Whole-genome sequencing of resistant mutants implicates the vacuolar ATP synthase as a genetic determinant of resistance to TAPs. Our studies highlight the potential of TAPs for single-dose treatment of Pf malaria in combination with other agents in clinical development.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Pyrimidines/pharmacology , Amines/pharmacology , Animals , Drug Evaluation, Preclinical , Drug Resistance, Microbial , Guinea Pigs , Half-Life , Rats
8.
J Med Chem ; 57(13): 5702-13, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24914738

ABSTRACT

Whole-cell high-throughput screening of the AstraZeneca compound library against the asexual blood stage of Plasmodium falciparum (Pf) led to the identification of amino imidazoles, a robust starting point for initiating a hit-to-lead medicinal chemistry effort. Structure-activity relationship studies followed by pharmacokinetics optimization resulted in the identification of 23 as an attractive lead with good oral bioavailability. Compound 23 was found to be efficacious (ED90 of 28.6 mg·kg(-1)) in the humanized P. falciparum mouse model of malaria (Pf/SCID model). Representative compounds displayed a moderate to fast killing profile that is comparable to that of chloroquine. This series demonstrates no cross-resistance against a panel of Pf strains with mutations to known antimalarial drugs, thereby suggesting a novel mechanism of action for this chemical class.


Subject(s)
Antimalarials/pharmacology , Benzimidazoles/therapeutic use , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemistry , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Biological Availability , Cell Line, Tumor , Cell Survival/drug effects , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , Mice , Small Molecule Libraries , Structure-Activity Relationship
9.
Emerg Infect Dis ; 19(9)2013.
Article in English | MEDLINE | ID: mdl-23969132

ABSTRACT

Intermittent preventive treatment during pregnancy with sulfadoxine-pyrimethamine (IPTp-SP) is a key strategy in the control of pregnancy-associated malaria. However, this strategy is compromised by widespread drug resistance from single-nucleotide polymorphisms in the Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthetase genes. During September 2008-October 2010, we monitored a cohort of 924 pregnant women in an area of Tanzania with declining malaria transmission. P. falciparum parasites were genotyped, and the effect of infecting haplotypes on birthweight was assessed. Of the genotyped parasites, 9.3%, 46.3%, and 44.4% had quadruple or less, quintuple, and sextuple mutated haplotypes, respectively. Mutant haplotypes were unrelated to SP doses. Compared with infections with the less-mutated haplotypes, infections with the sextuple haplotype mutation were associated with lower (359 g) birthweights. Continued use of the suboptimal IPTp-SP regimen should be reevaluated, and alternative strategies (e.g., intermittent screening and treatment or intermittent treatment with safe and effective alternative drugs) should be evaluated.


Subject(s)
Haplotypes , Infant, Low Birth Weight , Malaria, Falciparum/complications , Mutation , Plasmodium falciparum/genetics , Pregnancy Complications, Parasitic , Pregnancy Outcome , Adolescent , Adult , Alleles , Female , Gestational Age , Humans , Malaria, Falciparum/diagnosis , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Polymorphism, Single Nucleotide , Pregnancy , Pregnancy Complications, Parasitic/diagnosis , Pregnancy Complications, Parasitic/drug therapy , Pregnancy Complications, Parasitic/prevention & control , Prospective Studies , Tanzania , Tetrahydrofolate Dehydrogenase/genetics , Young Adult
10.
Nature ; 498(7455): 502-5, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23739325

ABSTRACT

Sequestration of Plasmodium falciparum-infected erythrocytes in host blood vessels is a key triggering event in the pathogenesis of severe childhood malaria, which is responsible for about one million deaths every year. Sequestration is mediated by specific interactions between members of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family and receptors on the endothelial lining. Severe childhood malaria is associated with expression of specific PfEMP1 subtypes containing domain cassettes (DCs) 8 and 13 (ref. 3), but the endothelial receptor for parasites expressing these proteins was unknown. Here we identify endothelial protein C receptor (EPCR), which mediates the cytoprotective effects of activated protein C, as the endothelial receptor for DC8 and DC13 PfEMP1. We show that EPCR binding is mediated through the amino-terminal cysteine-rich interdomain region (CIDRα1) of DC8 and group A PfEMP1 subfamilies, and that CIDRα1 interferes with protein C binding to EPCR. This PfEMP1 adhesive property links P. falciparum cytoadhesion to a host receptor involved in anticoagulation and endothelial cytoprotective pathways, and has implications for understanding malaria pathology and the development of new malaria interventions.


Subject(s)
Antigens, CD/metabolism , Malaria, Falciparum/pathology , Malaria, Falciparum/parasitology , Plasmodium falciparum/metabolism , Receptors, Cell Surface/metabolism , Animals , Blood Coagulation , Brain/blood supply , CHO Cells , Cell Adhesion , Cell Line , Cricetinae , Endothelial Cells/metabolism , Endothelial Protein C Receptor , Erythrocyte Membrane/metabolism , Humans , Inflammation/complications , Inflammation/parasitology , Inflammation/pathology , Malaria, Falciparum/complications , Microcirculation , Plasmodium falciparum/chemistry , Plasmodium falciparum/pathogenicity , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism
11.
PLoS One ; 8(1): e53794, 2013.
Article in English | MEDLINE | ID: mdl-23326508

ABSTRACT

BACKGROUND: Pregnancy associated malaria is associated with decreased birth weight, but in-utero evaluation of fetal growth alterations is rarely performed. The objective of this study was to investigate malaria induced changes in fetal growth during the 3(rd) trimester using trans-abdominal ultrasound. METHODS: An observational study of 876 pregnant women (398 primi- and secundigravidae and 478 multigravidae) was conducted in Tanzania. Fetal growth was monitored with ultrasound and screening for malaria was performed regularly. Birth weight and fetal weight were converted to z-scores, and fetal growth evaluated as fetal weight gain from the 26th week of pregnancy. RESULTS: Malaria infection only affected birth weight and fetal growth among primi- and secundigravid women. Forty-eight of the 398 primi- and secundigravid women had malaria during pregnancy causing a reduction in the newborns z-score of -0.50 (95% CI: -0.86, -0.13, P = 0.008, multiple linear regression). Fifty-eight percent (28/48) of the primi- and secundigravidae had malaria in the first half of pregnancy, but an effect on fetal growth was observed in the 3(rd) trimester with an OR of 4.89 for the fetal growth rate belonging to the lowest 25% in the population (95%CI: 2.03-11.79, P<0.001, multiple logistic regression). At an individual level, among the primi- and secundigravidae, 27% experienced alterations of fetal growth immediately after exposure but only for a short interval, 27% only late in pregnancy, 16.2% persistently from exposure until the end of pregnancy, and 29.7% had no alterations of fetal growth. CONCLUSIONS: The effect of malaria infections was observed during the 3(rd) trimester, despite infections occurring much earlier in pregnancy, and different mechanisms might operate leading to different patterns of growth alterations. This study highlights the need for protection against malaria throughout pregnancy and the recognition that observed changes in fetal growth might be a consequence of an infection much earlier in pregnancy.


Subject(s)
Fetal Growth Retardation/physiopathology , Malaria/physiopathology , Pregnancy Complications, Parasitic/physiopathology , Adult , Birth Weight , Female , Fetal Development , Fetal Growth Retardation/parasitology , Gestational Age , Humans , Infant, Newborn , Longitudinal Studies , Malaria/diagnostic imaging , Pregnancy , Pregnancy Trimester, Third , Tanzania , Ultrasonography, Prenatal
12.
PLoS One ; 7(9): e44773, 2012.
Article in English | MEDLINE | ID: mdl-23028617

ABSTRACT

OBJECTIVE: To produce a fetal weight chart representative of a Tanzanian population, and compare it to weight charts from Sub-Saharan Africa and the developed world. METHODS: A longitudinal observational study in Northeastern Tanzania. Pregnant women were followed throughout pregnancy with serial trans-abdominal ultrasound. All pregnancies with pathology were excluded and a chart representing the optimal growth potential was developed using fetal weights and birth weights. The weight chart was compared to a chart from Congo, a chart representing a white population, and a chart representing a white population but adapted to the study population. The prevalence of SGA was assessed using all four charts. RESULTS: A total of 2193 weight measurements from 583 fetuses/newborns were included in the fetal weight chart. Our chart had lower percentiles than all the other charts. Most importantly, in the end of pregnancy, the 10(th) percentiles deviated substantially causing an overestimation of the true prevalence of SGA newborns if our chart had not been used. CONCLUSIONS: We developed a weight chart representative for a Tanzanian population and provide evidence for the necessity of developing regional specific weight charts for correct identification of SGA. Our weight chart is an important tool that can be used for clinical risk assessments of newborns and for evaluating the effect of intrauterine exposures on fetal and newborn weight.


Subject(s)
Abdomen , Fetal Weight , Ultrasonography, Prenatal , Adolescent , Adult , Birth Weight , Developed Countries/statistics & numerical data , Female , Humans , Infant, Newborn , Longitudinal Studies , Male , Middle Aged , Pregnancy , Tanzania , Time Factors , Young Adult
13.
PLoS One ; 7(9): e43663, 2012.
Article in English | MEDLINE | ID: mdl-22970138

ABSTRACT

Malaria during pregnancy in Plasmodium falciparum endemic regions is a major cause of mortality and severe morbidity. VAR2CSA is the parasite ligand responsible for sequestration of Plasmodium falciparum infected erythrocytes to the receptor chondroitin sulfate A (CSA) in the placenta and is the leading candidate for a placental malaria vaccine. Antibodies induced in rats against the recombinant DBL4ε domain of VAR2CSA inhibit the binding of a number of laboratory and field parasite isolates to CSA. In this study, we used a DBL4ε peptide-array to identify epitopes targeted by DBL4ε-specific antibodies that inhibit CSA-binding of infected erythrocytes. We identified three regions of overlapping peptides which were highly antigenic. One peptide region distinguished itself particularly by showing a clear difference in the binding profile of highly parasite blocking IgG compared to the IgG with low capacity to inhibit parasite adhesion to CSA. This region was further characterized and together these results suggest that even though antibodies against the synthetic peptides which cover this region did not recognize native protein, the results using the mutant domain suggest that this linear epitope might be involved in the induction of inhibitory antibodies induced by the recombinant DBL4ε domain.


Subject(s)
Antigens, Protozoan/chemistry , Epitopes, B-Lymphocyte/immunology , Amino Acid Sequence , Animals , Antibodies, Protozoan/chemistry , Antibodies, Protozoan/immunology , Antibody Formation/immunology , Antibody Specificity/immunology , Antigens, Protozoan/immunology , Cell Adhesion , Epitope Mapping , Epitopes, B-Lymphocyte/chemistry , Erythrocytes/parasitology , Female , Humans , Immune Sera/immunology , Linear Models , Models, Molecular , Molecular Sequence Data , Multivariate Analysis , Mutant Proteins/chemistry , Mutant Proteins/immunology , Parasites/immunology , Peptides/chemistry , Peptides/immunology , Plasmodium falciparum/cytology , Plasmodium falciparum/immunology , Pregnancy , Protein Structure, Tertiary , Rats , Sequence Alignment
14.
Acta Obstet Gynecol Scand ; 91(9): 1061-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22676243

ABSTRACT

OBJECTIVE: To identify factors associated with perinatal mortality in northeastern Tanzania. DESIGN: Prospective cohort study. SETTING: Northeastern Tanzania. Population. 872 mothers and their newborns. METHODS: Pregnant women were screened for factors possibly associated with perinatal mortality, including preeclampsia, small-for-gestational age, preterm delivery, anemia, and health-seeking behavior. Fetal growth was monitored using ultrasound. Finally, the specific causes of the perinatal deaths were evaluated. MAIN OUTCOME MEASURE: Perinatal mortality. RESULTS: Forty-six deaths occurred. Key factors associated with perinatal mortality were preterm delivery (adjusted odds ratio (OR) 14.47, 95% confidence interval (CI) 3.23-64.86, p < 0.001), small-for-gestational age (adjusted OR 3.54, 95%CI 1.18-10.61, p = 0.02), and maternal anemia (adjusted OR 10.34, 95%CI 1.89-56.52, p = 0.007). Adherence to the antenatal care program (adjusted OR 0.027, 95%CI 0.003-0.26, p = 0.002) protected against perinatal mortality. The cause of death in 43% of cases was attributed to complications related to labor and specifically to intrapartum asphyxia (30%) and neonatal infection (13%). Among the remaining deaths, 27% (7/26) were attributed to preeclampsia and 23% (6/26) to small-for-gestational age. Of these, 54% (14/26) were preterm. CONCLUSIONS: Preeclampsia, small-for-gestational age and preterm delivery were key risk factors and causes of perinatal mortality in this area of Tanzania. Maternal anemia was also strongly associated with perinatal mortality. Furthermore, asphyxia accounted for a large proportion of the perinatal deaths. Interventions should target the prevention and handling of these conditions in order to reduce perinatal mortality.


Subject(s)
Asphyxia Neonatorum/mortality , Infant, Small for Gestational Age , Perinatal Mortality , Premature Birth/mortality , Adult , Anemia, Hypochromic/complications , Cause of Death , Female , Humans , Infant, Newborn , Obstetric Labor Complications/mortality , Pre-Eclampsia , Pregnancy , Prospective Studies , Risk Factors , Tanzania/epidemiology
15.
Malar J ; 11: 211, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-22720788

ABSTRACT

BACKGROUND: Accurate diagnosis and prompt treatment of pregnancy-associated malaria (PAM) are key aspects in averting adverse pregnancy outcomes. Microscopy is the gold standard in malaria diagnosis, but it has limited detection and availability. When used appropriately, rapid diagnostic tests (RDTs) could be an ideal diagnostic complement to microscopy, due to their ease of use and adequate sensitivity in detecting even sub-microscopic infections. Polymerase chain reaction (PCR) is even more sensitive, but it is mainly used for research purposes. The accuracy and reliability of RDTs in diagnosing PAM was evaluated using microscopy and PCR. METHODS: A cohort of pregnant women in north-eastern Tanzania was followed throughout pregnancy for detection of plasmodial infection using venous and placental blood samples evaluated by histidine rich protein 2 (HRP-2) and parasite lactate dehydrogenase (pLDH) based RDTs (Parascreen™) or HRP-2 only (Paracheck Pf® and ParaHIT®f), microscopy and nested Plasmodium species diagnostic PCR. RESULTS: From a cohort of 924 pregnant women who completed the follow up, complete RDT and microscopy data was available for 5,555 blood samples and of these 442 samples were analysed by PCR. Of the 5,555 blood samples, 49 ((proportion and 95% confidence interval) 0.9% [0.7 -1.1]) samples were positive by microscopy and 91 (1.6% [1.3-2.0]) by RDT. Forty-six (50.5% [40.5 - 60.6]) and 45 (49.5% [39.4 - 59.5]) of the RDT positive samples were positive and negative by microscopy, respectively, whereas nineteen (42.2% [29.0 - 56.7]) of the microscopy negative, but RDT positive, samples were positive by PCR. Three (0.05% [0.02 - 0.2]) samples were positive by microscopy but negative by RDT. 351 of the 5,461 samples negative by both RDT and microscopy were tested by PCR and found negative. There was no statistically significant difference between the performances of the different RDTs. CONCLUSIONS: Microscopy underestimated the real burden of malaria during pregnancy and RDTs performed better than microscopy in diagnosing PAM. In areas where intermittent preventive treatment during pregnancy may be abandoned due to low and decreasing malaria risk and instead replaced with active case management, screening with RDT is likely to identify most infections in pregnant women and out-performs microscopy as a diagnostic tool.


Subject(s)
Clinical Laboratory Techniques/methods , Diagnostic Tests, Routine/methods , Malaria/diagnosis , Parasitology/methods , Pregnancy Complications, Infectious/diagnosis , Adolescent , Adult , Antigens, Protozoan/blood , Blood/parasitology , Cohort Studies , Female , Humans , Pregnancy , Prospective Studies , Sensitivity and Specificity , Tanzania , Young Adult
16.
Proc Natl Acad Sci U S A ; 109(26): E1791-800, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22619319

ABSTRACT

The clinical outcome of Plasmodium falciparum infections ranges from asymptomatic parasitemia to severe malaria syndromes associated with high mortality. The virulence of P. falciparum infections is associated with the type of P. falciparum erythrocyte membrane protein 1 (PfEMP1) expressed on the surface of infected erythrocytes to anchor these to the vascular lining. Although var2csa, the var gene encoding the PfEMP1 associated with placental malaria, was discovered in 2003, the identification of the var/PfEMP1 variants associated with severe malaria in children has remained elusive. To identify var/PfEMP1 variants associated with severe disease outcome, we compared var transcript levels in parasites from 88 children with severe malaria and 40 children admitted to the hospital with uncomplicated malaria. Transcript analysis was performed by RT-quantitative PCR using a set of 42 primer pairs amplifying var subtype-specific loci covering most var/PfEMP1 subtypes. In addition, we characterized the near-full-length sequence of the most prominently expressed var genes in three patients diagnosed with severe anemia and/or cerebral malaria. The combined analysis showed that severe malaria syndromes, including severe anemia and cerebral malaria, are associated with high transcript levels of PfEMP1 domain cassette 8-encoding var genes. Transcript levels of group A var genes, including genes encoding domain cassette 13, were also significantly higher in patients with severe syndromes compared with those with uncomplicated malaria. This study specifies the var/PfEMP1 types expressed in severe malaria in children, and thereby provides unique targets for future efforts to prevent and treat severe malaria infections.


Subject(s)
Genes, Protozoan , Malaria, Falciparum/pathology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Animals , Child , Humans , Malaria, Falciparum/genetics , Molecular Sequence Data
17.
Malar J ; 11: 129, 2012 Apr 25.
Article in English | MEDLINE | ID: mdl-22533832

ABSTRACT

BACKGROUND: Members of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion antigen family are major contributors to the pathogenesis of P. falciparum malaria infections. The PfEMP1-encoding var genes are among the most diverse sequences in nature, but three genes, var1, var2csa and var3 are found conserved in most parasite genomes. The most severe forms of malaria disease are caused by parasites expressing a subset of antigenically conserved PfEMP1 variants. Thus the ubiquitous and conserved VAR3 PfEMP1 is of particular interest to the research field. Evidence of VAR3 expression on the infected erythrocyte surface has never been presented, and var3 genes have been proposed to be transcribed and expressed differently from the rest of the var gene family members. METHODS: In this study, parasites expressing VAR3 PfEMP1 were generated using anti-VAR3 antibodies and the var transcript and PfEMP1 expression profiles of the generated parasites were investigated. The IgG reactivity by plasma from children living in malaria-endemic Tanzania was tested to parasites and recombinant VAR3 protein. Parasites from hospitalized children were isolated and the transcript level of var3 was investigated. RESULTS: Var3 is transcribed and its protein product expressed on the surface of infected erythrocytes. The VAR3-expressing parasites were better recognized by children´s IgG than a parasite line expressing a Group B var gene. Two in 130 children showed increased recognition of parasites expressing VAR3 and to the recombinant VAR3 protein after a malaria episode and the isolated parasites showed high levels of var3 transcripts. CONCLUSIONS: Collectively, the presented data suggest that var3 is transcribed and its protein product expressed on the surface of infected erythrocytes in the same manner as seen for other var genes both in vitro and in vivo. Only very few children exhibit seroconversion to VAR3 following a malaria episode requiring hospitalization, supporting the previous conclusion drawn from var3 transcript analysis of parasites collected from children hospitalized with malaria, that VAR3 is not associated with severe anaemia or cerebral malaria syndromes in children.


Subject(s)
Antigens, Protozoan/biosynthesis , Antigens, Protozoan/genetics , Gene Expression Profiling , Plasmodium falciparum/genetics , Protozoan Proteins/biosynthesis , Protozoan Proteins/genetics , Adolescent , Animals , Antibodies, Protozoan/blood , Child , Child, Preschool , Erythrocytes/parasitology , Humans , Infant , Male , Real-Time Polymerase Chain Reaction , Tanzania , Young Adult
18.
Malar J ; 10: 176, 2011 Jun 26.
Article in English | MEDLINE | ID: mdl-21703016

ABSTRACT

BACKGROUND: Despite some problems related to accuracy and applicability of malaria rapid diagnostic tests (RDTs), they are currently the best option in areas with limited laboratory services for improving case management through parasitological diagnosis and reducing over-treatment. This study was conducted in areas with declining malaria burden to assess; 1) the accuracy of RDTs when used at different community settings, 2) the impact of using RDTs on anti-malarial dispensing by community-owned resource persons (CORPs) and 3) adherence of CORPs to treatment guidelines by providing treatment based on RDT results. METHODS: Data were obtained from: 1) a longitudinal study of passive case detection of fevers using CORPs in six villages in Korogwe; and 2) cross-sectional surveys (CSS) in six villages of Korogwe and Muheza districts, north-eastern, Tanzania. Performance of RDTs was compared with microscopy as a gold standard, and factors affecting their accuracy were explored using a multivariate logistic regression model. RESULTS: Overall sensitivity and specificity of RDTs in the longitudinal study (of 23,793 febrile cases; 18,154 with microscopy and RDTs results) were 88.6% and 88.2%, respectively. In the CSS, the sensitivity was significantly lower (63.4%; χ2=367.7, p<0.001), while the specificity was significantly higher (94.3%; χ2=143.1, p<0.001) when compared to the longitudinal study. As determinants of sensitivity of RDTs in both studies, parasite density of<200 asexual parasites/µl was significantly associated with high risk of false negative RDTs (OR≥16.60, p<0.001), while the risk of false negative test was significantly lower among cases with fever (axillary temperature ≥37.5 °C) (OR≤0.63, p≤0.027). The risk of false positive RDT (as a determinant of specificity) was significantly higher in cases with fever compared to afebrile cases (OR≥2.40, p<0.001). Using RDTs reduced anti-malarials dispensing from 98.9% to 32.1% in cases aged ≥5 years. CONCLUSION: Although RDTs had low sensitivity and specificity, which varied widely depending on fever and parasite density, using RDTs reduced over-treatment with anti-malarials significantly. Thus, with declining malaria prevalence, RDTs will potentially identify majority of febrile cases with parasites and lead to improved management of malaria and non-malaria fevers.


Subject(s)
Antimalarials/therapeutic use , Diagnostic Tests, Routine/methods , Malaria/diagnosis , Malaria/drug therapy , Adolescent , Adult , Child , Child, Preschool , Cross-Sectional Studies , Drug Utilization/statistics & numerical data , Female , Guideline Adherence/statistics & numerical data , Humans , Infant , Infant, Newborn , Longitudinal Studies , Male , Sensitivity and Specificity , Tanzania , Young Adult
19.
Vaccine ; 29(3): 437-43, 2011 Jan 10.
Article in English | MEDLINE | ID: mdl-21075162

ABSTRACT

Malaria during pregnancy is a major cause of intra-uterine growth-retardation and infant death in sub-Saharan Africa. Ideally, this could be prevented by a vaccine delivered before the first pregnancy. Antibodies against domain DBL4ɛ from VAR2CSA has been shown to inhibit adhesion of laboratory isolates to the placental receptor chondroitin sulfate A. In this study, the binding inhibitory efficacy of IgG elicited by two different DBL4ɛ recombinant proteins was tested on a panel of fresh clinical isolates from pregnant women living in Benin and Tanzania. The most promising recombinant protein elicited antibodies with similar efficacy as pooled plasma from immune multi-gravid African women.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Cell Adhesion , DNA Repair Enzymes/metabolism , Erythrocytes/parasitology , Malaria, Falciparum/immunology , Pregnancy Complications, Infectious/immunology , Transcription Factors/metabolism , Benin , Female , Humans , Immunoglobulin G/immunology , Malaria Vaccines/immunology , Plasmodium falciparum/immunology , Pregnancy , Recombinant Proteins/immunology , Tanzania
20.
J Immunol ; 185(12): 7553-61, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21078904

ABSTRACT

Acquired protection from Plasmodium falciparum placental malaria, a major cause of maternal, fetal, and infant morbidity, is mediated by IgG specific for the P. falciparum erythrocyte membrane protein 1 variant VAR2CSA. This protein enables adhesion of P. falciparum-infected erythrocytes to chondroitin sulfate A in the intervillous space. Although interclonal variation of the var2csa gene is lower than that among var genes in general, VAR2CSA-specific Abs appear to target mainly polymorphic epitopes. This has raised doubts about the feasibility of VAR2CSA-based vaccines. We used eight human monoclonal IgG Abs from affinity-matured memory B cells of P. falciparum-exposed women to study interclonal variation and functional importance of Ab epitopes among placental and peripheral parasites from East and West Africa. Most placental P. falciparum isolates were labeled by several mAbs, whereas peripheral isolates from children were essentially nonreactive. The mAb reactivity of peripheral isolates from pregnant women indicated that some were placental, whereas others had alternative sequestration foci. Most of the mAbs were comparable in their reactivity with bound infected erythrocytes (IEs) and recombinant VAR2CSA and interfered with IE and/or VAR2CSA binding to chondroitin sulfate A. Pair-wise mAb combinations were more inhibitory than single mAbs, and all of the mAbs together was the most efficient combination. Each mAb could opsonize IEs for phagocytosis, and a combination of the eight mAbs caused phagocytosis similar to that of plasma IgG-opsonized IEs. We conclude that functionally important Ab epitopes are shared by the majority of polymorphic VAR2CSA variants, which supports the feasibility of VAR2CSA-based vaccines against placental malaria.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Protozoan/immunology , Chondroitin Sulfates/immunology , Epitopes/immunology , Erythrocytes/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adult , B-Lymphocytes/immunology , Child , Child, Preschool , Epitopes/genetics , Erythrocytes/parasitology , Female , Humans , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Malaria Vaccines/pharmacology , Malaria, Falciparum/genetics , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Male , Placenta/immunology , Placenta/parasitology , Plasmodium falciparum/genetics , Pregnancy , Pregnancy Complications, Infectious/genetics , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/parasitology , Pregnancy Complications, Infectious/prevention & control , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...