Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Pneumonia (Nathan) ; 16(1): 9, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38835101

ABSTRACT

BACKGROUND: The Covid-19 pandemic has caused immense pressure on Intensive Care Units (ICU). In patients with severe ARDS due to Covid-19, respiratory mechanics are important for determining the severity of lung damage. Lung auscultation could not be used during the pandemic despite its merit. The main objective of this study was to investigate associations between lung auscultatory sound features and lung mechanical properties, length of stay (LOS) and survival, in adults with severe Covid-19 ARDS. METHODS: Consecutive patients admitted to a large ICU between 2020 and 2021 (n = 173) were included. Digital stethoscopes obtained auscultatory sounds and stored them in an on-line database for replay and further processing using advanced AI techniques. Correlation and regression analysis explored relationships between digital auscultation findings and lung mechanics or the ICU outcome. The resulting annotated lung sounds database is also publicly available as supplementary material. RESULTS: The presence of squawks was associated with the ICU LOS, outcome and 90-day mortality. Other features (age, SOFA score & oxygenation index upon admission, minimum crackle entropy) had significant impact on outcome. Additional features affecting the 90-d survival were age and mean crackle entropy. Multivariate logistic regression showed that survival was affected by age, baseline SOFA, baseline oxygenation index and minimum crackle entropy. CONCLUSIONS: Respiratory mechanics were associated with various adventitious sounds, whereas the lung sound analytics and the presence of certain adventitious sounds correlated with the ICU outcome and the 90-d survival. Spectral features of crackles sounds can serve as prognostic factors for survival, highlighting the importance of digital auscultation.

2.
Comput Biol Med ; 176: 108557, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38728995

ABSTRACT

BACKGROUND: Heart failure (HF), a global health challenge, requires innovative diagnostic and management approaches. The rapid evolution of deep learning (DL) in healthcare necessitates a comprehensive review to evaluate these developments and their potential to enhance HF evaluation, aligning clinical practices with technological advancements. OBJECTIVE: This review aims to systematically explore the contributions of DL technologies in the assessment of HF, focusing on their potential to improve diagnostic accuracy, personalize treatment strategies, and address the impact of comorbidities. METHODS: A thorough literature search was conducted across four major electronic databases: PubMed, Scopus, Web of Science and IEEE Xplore, yielding 137 articles that were subsequently categorized into five primary application areas: cardiovascular disease (CVD) classification, HF detection, image analysis, risk assessment, and other clinical analyses. The selection criteria focused on studies utilizing DL algorithms for HF assessment, not limited to HF detection but extending to any attempt in analyzing and interpreting HF-related data. RESULTS: The analysis revealed a notable emphasis on CVD classification and HF detection, with DL algorithms showing significant promise in distinguishing between affected individuals and healthy subjects. Furthermore, the review highlights DL's capacity to identify underlying cardiomyopathies and other comorbidities, underscoring its utility in refining diagnostic processes and tailoring treatment plans to individual patient needs. CONCLUSIONS: This review establishes DL as a key innovation in HF management, highlighting its role in advancing diagnostic accuracy and personalized care. The insights provided advocate for the integration of DL in clinical settings and suggest directions for future research to enhance patient outcomes in HF care.


Subject(s)
Deep Learning , Heart Failure , Humans , Heart Failure/diagnosis
3.
JMIR Public Health Surveill ; 10: e47979, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38315620

ABSTRACT

BACKGROUND: Despite COVID-19 vaccine mandates, many chose to forgo vaccination, raising questions about the psychology underlying how judgment affects these choices. Research shows that reward and aversion judgments are important for vaccination choice; however, no studies have integrated such cognitive science with machine learning to predict COVID-19 vaccine uptake. OBJECTIVE: This study aims to determine the predictive power of a small but interpretable set of judgment variables using 3 machine learning algorithms to predict COVID-19 vaccine uptake and interpret what profile of judgment variables was important for prediction. METHODS: We surveyed 3476 adults across the United States in December 2021. Participants answered demographic, COVID-19 vaccine uptake (ie, whether participants were fully vaccinated), and COVID-19 precaution questions. Participants also completed a picture-rating task using images from the International Affective Picture System. Images were rated on a Likert-type scale to calibrate the degree of liking and disliking. Ratings were computationally modeled using relative preference theory to produce a set of graphs for each participant (minimum R2>0.8). In total, 15 judgment features were extracted from these graphs, 2 being analogous to risk and loss aversion from behavioral economics. These judgment variables, along with demographics, were compared between those who were fully vaccinated and those who were not. In total, 3 machine learning approaches (random forest, balanced random forest [BRF], and logistic regression) were used to test how well judgment, demographic, and COVID-19 precaution variables predicted vaccine uptake. Mediation and moderation were implemented to assess statistical mechanisms underlying successful prediction. RESULTS: Age, income, marital status, employment status, ethnicity, educational level, and sex differed by vaccine uptake (Wilcoxon rank sum and chi-square P<.001). Most judgment variables also differed by vaccine uptake (Wilcoxon rank sum P<.05). A similar area under the receiver operating characteristic curve (AUROC) was achieved by the 3 machine learning frameworks, although random forest and logistic regression produced specificities between 30% and 38% (vs 74.2% for BRF), indicating a lower performance in predicting unvaccinated participants. BRF achieved high precision (87.8%) and AUROC (79%) with moderate to high accuracy (70.8%) and balanced recall (69.6%) and specificity (74.2%). It should be noted that, for BRF, the negative predictive value was <50% despite good specificity. For BRF and random forest, 63% to 75% of the feature importance came from the 15 judgment variables. Furthermore, age, income, and educational level mediated relationships between judgment variables and vaccine uptake. CONCLUSIONS: The findings demonstrate the underlying importance of judgment variables for vaccine choice and uptake, suggesting that vaccine education and messaging might target varying judgment profiles to improve uptake. These methods could also be used to aid vaccine rollouts and health care preparedness by providing location-specific details (eg, identifying areas that may experience low vaccination and high hospitalization).


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Judgment , Cross-Sectional Studies , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Cognitive Science , Ethnicity
4.
Comput Methods Programs Biomed ; 240: 107720, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37544061

ABSTRACT

BACKGROUND AND OBJECTIVE: Respiratory diseases are among the most significant causes of morbidity and mortality worldwide, causing substantial strain on society and health systems. Over the last few decades, there has been increasing interest in the automatic analysis of respiratory sounds and electrical impedance tomography (EIT). Nevertheless, no publicly available databases with both respiratory sound and EIT data are available. METHODS: In this work, we have assembled the first open-access bimodal database focusing on the differential diagnosis of respiratory diseases (BRACETS: Bimodal Repository of Auscultation Coupled with Electrical Impedance Thoracic Signals). It includes simultaneous recordings of single and multi-channel respiratory sounds and EIT. Furthermore, we have proposed several machine learning-based baseline systems for automatically classifying respiratory diseases in six distinct evaluation tasks using respiratory sound and EIT (A1, A2, A3, B1, B2, B3). These tasks included classifying respiratory diseases at sample and subject levels. The performance of the classification models was evaluated using a 5-fold cross-validation scheme (with subject isolation between folds). RESULTS: The resulting database consists of 1097 respiratory sounds and 795 EIT recordings acquired from 78 adult subjects in two countries (Portugal and Greece). In the task of automatically classifying respiratory diseases, the baseline classification models have achieved the following average balanced accuracy: Task A1 - 77.9±13.1%; Task A2 - 51.6±9.7%; Task A3 - 38.6±13.1%; Task B1 - 90.0±22.4%; Task B2 - 61.4±11.8%; Task B3 - 50.8±10.6%. CONCLUSION: The creation of this database and its public release will aid the research community in developing automated methodologies to assess and monitor respiratory function, and it might serve as a benchmark in the field of digital medicine for managing respiratory diseases. Moreover, it could pave the way for creating multi-modal robust approaches for that same purpose.


Subject(s)
Respiration , Respiratory Tract Diseases , Thorax , Auscultation/instrumentation , Thorax/physiology , Electric Impedance , Humans , Male , Middle Aged , Aged , Adult , Respiratory Tract Diseases/diagnosis , Respiratory Tract Diseases/physiopathology
5.
Nutrients ; 15(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37242204

ABSTRACT

BACKGROUND: The COVID-19 pandemic has impacted children's lifestyles, including dietary behaviors. Of particular concern among these behaviors is the heightened prevalence of ultra-processed food (UPF) consumption, which has been linked to the development of obesity and related non-communicable diseases. The present study examines the changes in (1) UPF and (2) vegetable and/or fruit consumption among school-aged children in Greece and Sweden before and during the COVID-19 pandemic. METHODS: The analyzed dataset consisted of main meal pictures (breakfast, lunch, and dinner) captured by 226 Greek students (94 before the pandemic and 132 during the pandemic) and 421 Swedish students (293 before and 128 during the pandemic), aged 9-18, who voluntarily reported their meals using a mobile application. The meal pictures were collected over four-month periods over two consecutive years; namely, between the 20th of August and the 20th of December in 2019 (before the COVID-19 outbreak) and the same period in 2020 (during the COVID-19 outbreak). The collected pictures were annotated manually by a trained nutritionist. A chi-square test was performed to evaluate the differences in proportions before versus during the pandemic. RESULTS: In total, 10,770 pictures were collected, including 6474 pictures from before the pandemic and 4296 pictures collected during the pandemic. Out of those, 86 pictures were excluded due to poor image quality, and 10,684 pictures were included in the final analyses (4267 pictures from Greece and 6417 pictures from Sweden). The proportion of UPF significantly decreased during vs. before the pandemic in both populations (50% vs. 46%, p = 0.010 in Greece, and 71% vs. 66%, p < 0.001 in Sweden), while the proportion of vegetables and/or fruits significantly increased in both cases (28% vs. 35%, p < 0.001 in Greece, and 38% vs. 42%, p = 0.019 in Sweden). There was a proportional increase in meal pictures containing UPF among boys in both countries. In Greece, both genders showed an increase in vegetables and/or fruits, whereas, in Sweden, the increase in fruit and/or vegetable consumption was solely observed among boys. CONCLUSIONS: The proportion of UPF in the Greek and Swedish students' main meals decreased during the COVID-19 pandemic vs. before the pandemic, while the proportion of main meals with vegetables and/or fruits increased.


Subject(s)
COVID-19 , Food Services , Child , Humans , Male , Female , Vegetables , Fruit , Greece/epidemiology , Pandemics , Sweden/epidemiology , Food, Processed , COVID-19/epidemiology , Students , Diet , Feeding Behavior
6.
JMIR Form Res ; 7: e40821, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-36888554

ABSTRACT

BACKGROUND: The COVID-19 pandemic has heightened mental health concerns, but the temporal relationship between mental health conditions and SARS-CoV-2 infection has not yet been investigated. Specifically, psychological issues, violent behaviors, and substance use were reported more during the COVID-19 pandemic than before the pandemic. However, it is unknown whether a prepandemic history of these conditions increases an individual's susceptibility to SARS-CoV-2. OBJECTIVE: This study aimed to better understand the psychological risks underlying COVID-19, as it is important to investigate how destructive and risky behaviors may increase a person's susceptibility to COVID-19. METHODS: In this study, we analyzed data from a survey of 366 adults across the United States (aged 18 to 70 years); this survey was administered between February and March of 2021. The participants were asked to complete the Global Appraisal of Individual Needs-Short Screener (GAIN-SS) questionnaire, which indicates an individual's history of high-risk and destructive behaviors and likelihood of meeting diagnostic criteria. The GAIN-SS includes 7 questions related to externalizing behaviors, 8 related to substance use, and 5 related to crime and violence; responses were given on a temporal scale. The participants were also asked whether they ever tested positive for COVID-19 and whether they ever received a clinical diagnosis of COVID-19. GAIN-SS responses were compared between those who reported and those who did not report COVID-19 to determine if those who reported COVID-19 also reported GAIN-SS behaviors (Wilcoxon rank sum test, α=.05). In total, 3 hypotheses surrounding the temporal relationships between the recency of GAIN-SS behaviors and COVID-19 infection were tested using proportion tests (α=.05). GAIN-SS behaviors that significantly differed (proportion tests, α=.05) between COVID-19 responses were included as independent variables in multivariable logistic regression models with iterative downsampling. This was performed to assess how well a history of GAIN-SS behaviors statistically discriminated between those who reported and those who did not report COVID-19. RESULTS: Those who reported COVID-19 more frequently indicated past GAIN-SS behaviors (Q<0.05). Furthermore, the proportion of those who reported COVID-19 was higher (Q<0.05) among those who reported a history of GAIN-SS behaviors; specifically, gambling and selling drugs were common across the 3 proportion tests. Multivariable logistic regression revealed that GAIN-SS behaviors, particularly gambling, selling drugs, and attention problems, accurately modeled self-reported COVID-19, with model accuracies ranging from 77.42% to 99.55%. That is, those who exhibited destructive and high-risk behaviors before and during the pandemic could be discriminated from those who did not exhibit these behaviors when modeling self-reported COVID-19. CONCLUSIONS: This preliminary study provides insights into how a history of destructive and risky behaviors influences infection susceptibility, offering possible explanations for why some persons may be more susceptible to COVID-19, potentially in relation to reduced adherence to prevention guidelines or not seeking vaccination.

7.
Sci Rep ; 12(1): 21803, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36526731

ABSTRACT

The necessity for reliable, standardized and validated fitness to drive assessment tools for older drivers have been highlighted and discussed for over three decades. Existing neuropsychological tests of driving performance are focusing mostly on visuo-spatial attention and executive functioning rather than other senses. Over the last decade, olfactory deterioration has been found to be associated with cognitive decline and predicting transition from mild cognitive impairment to dementia. The AGILE fitness to drive battery is standardized for older drivers. In this study it was adapted to include the olfactory Sniff' and Stick's test. The aim was to investigate the value of relevant deficits as predictive markers of driving ability in three driving groups (older drivers with: (a) no impairment (controls), (b) with Mild Cognitive Impairment (MCI) and (c) MCI and other chronic conditions, i.e., comorbidities). So far, no other study has investigated the predictive value of olfactory deficits in driving ability. The findings revealed that discrimination is important for the first year of the examination and as the decline progresses, identification becomes the better olfactory marker. The latter is also evident in the literature. Hence, the results showed that less indicators are required compared to the initial battery. The olfactory markers were dominant over the neuropsychological tests, apart from alertness, for predicting the older driver's fitness to drive regardless of the presence of cognitive impairment and other chronic conditions.


Subject(s)
Automobile Driving , Cognitive Dysfunction , Humans , Aged , Prognosis , Neuropsychological Tests , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Attention , Smell
8.
Curr Dev Nutr ; 6(9): nzac123, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36157849

ABSTRACT

The relation among the various causal factors of obesity is not well understood, and there remains a lack of viable data to advance integrated, systems models of its etiology. The collection of big data has begun to allow the exploration of causal associations between behavior, built environment, and obesity-relevant health outcomes. Here, the traditional epidemiologic and emerging big data approaches used in obesity research are compared, describing the research questions, needs, and outcomes of 3 broad research domains: eating behavior, social food environments, and the built environment. Taking tangible steps at the intersection of these domains, the recent European Union project "BigO: Big data against childhood obesity" used a mobile health tool to link objective measurements of health, physical activity, and the built environment. BigO provided learning on the limitations of big data, such as privacy concerns, study sampling, and the balancing of epidemiologic domain expertise with the required technical expertise. Adopting big data approaches will facilitate the exploitation of data concerning obesity-relevant behaviors of a greater variety, which are also processed at speed, facilitated by mobile-based data collection and monitoring systems, citizen science, and artificial intelligence. These approaches will allow the field to expand from causal inference to more complex, systems-level predictive models, stimulating ambitious and effective policy interventions.

9.
JMIR Med Inform ; 10(8): e38454, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35969441

ABSTRACT

BACKGROUND: Electrocardiogram (ECG) is one of the most common noninvasive diagnostic tools that can provide useful information regarding a patient's health status. Deep learning (DL) is an area of intense exploration that leads the way in most attempts to create powerful diagnostic models based on physiological signals. OBJECTIVE: This study aimed to provide a systematic review of DL methods applied to ECG data for various clinical applications. METHODS: The PubMed search engine was systematically searched by combining "deep learning" and keywords such as "ecg," "ekg," "electrocardiogram," "electrocardiography," and "electrocardiology." Irrelevant articles were excluded from the study after screening titles and abstracts, and the remaining articles were further reviewed. The reasons for article exclusion were manuscripts written in any language other than English, absence of ECG data or DL methods involved in the study, and absence of a quantitative evaluation of the proposed approaches. RESULTS: We identified 230 relevant articles published between January 2020 and December 2021 and grouped them into 6 distinct medical applications, namely, blood pressure estimation, cardiovascular disease diagnosis, ECG analysis, biometric recognition, sleep analysis, and other clinical analyses. We provide a complete account of the state-of-the-art DL strategies per the field of application, as well as major ECG data sources. We also present open research problems, such as the lack of attempts to address the issue of blood pressure variability in training data sets, and point out potential gaps in the design and implementation of DL models. CONCLUSIONS: We expect that this review will provide insights into state-of-the-art DL methods applied to ECG data and point to future directions for research on DL to create robust models that can assist medical experts in clinical decision-making.

10.
JMIR Form Res ; 6(10): e36656, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-35763757

ABSTRACT

BACKGROUND: Although the mental health impacts of COVID-19 on the general population have been well studied, studies of the long-term impacts of COVID-19 on infected individuals are relatively new. To date, depression, anxiety, and neurological symptoms associated with post-COVID-19 syndrome (PCS) have been observed in the months following COVID-19 recovery. Suicidal thoughts and behavior (STB) have also been preliminarily proposed as sequelae of COVID-19. OBJECTIVE: We asked 3 questions. First, do participants reporting a history of COVID-19 diagnosis or a close relative having severe COVID-19 symptoms score higher on depression (Patient Health Questionnaire-9 [PHQ-9]) or state anxiety (State Trait Anxiety Index) screens than those who do not? Second, do participants reporting a COVID-19 diagnosis score higher on PCS-related PHQ-9 items? Third, do participants reporting a COVID-19 diagnosis or a close relative having severe COVID-19 symptoms score higher in STB before, during, or after the first year of the pandemic? METHODS: This preliminary study analyzed responses to a COVID-19 and mental health questionnaire obtained from a US population sample, whose data were collected between February 2021 and March 2021. We used the Mann-Whitney U test to detect differences in the medians of the total PHQ-9 scores, PHQ-9 component scores, and several STB scores between participants claiming a past clinician diagnosis of COVID-19 and those denying one, as well as between participants claiming severe COVID-19 symptoms in a close relative and those denying them. Where significant differences existed, we created linear regression models to predict the scores based on COVID-19 response as well as demographics to identify potential confounding factors in the Mann-Whitney relationships. Moreover, for STB scores, which corresponded to 5 questions asking about 3 different time intervals (i.e., past 1 year or more, past 1 month to 1 year, and past 1 month), we developed repeated-measures ANOVAs to determine whether scores tended to vary over time. RESULTS: We found greater total depression (PHQ-9) and state anxiety (State Trait Anxiety Index) scores in those with COVID-19 history than those without (Bonferroni P=.001 and Bonferroni P=.004) despite a similar history of diagnosed depression and anxiety. Greater scores were noted for a subset of depression symptoms (PHQ-9 items) that overlapped with the symptoms of PCS (all Bonferroni Ps<.05). Moreover, we found greater overall STB scores in those with COVID-19 history, equally in time windows preceding, during, and proceeding infection (all Bonferroni Ps<.05). CONCLUSIONS: We confirm previous studies linking depression and anxiety diagnoses to COVID-19 recovery. Moreover, our findings suggest that depression diagnoses associated with COVID-19 history relate to PCS symptoms, and that STB associated with COVID-19 in some cases precede infection.

11.
JMIR Form Res ; 6(8): e36444, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35763758

ABSTRACT

BACKGROUND: The COVID-19 disease results from infection by the SARS-CoV-2 virus to produce a range of mild to severe physical, neurological, and mental health symptoms. The COVID-19 pandemic has indirectly caused significant emotional distress, triggering the emergence of mental health symptoms in individuals who were not previously affected or exacerbating symptoms in those with existing mental health conditions. Emotional distress and certain mental health conditions can lead to violent ideation and disruptive behavior, including aggression, threatening acts, deliberate harm toward other people or animals, and inattention to or noncompliance with education or workplace rules. Of the many mental health conditions that can be associated with violent ideation and disruptive behavior, psychosis can evidence greater vulnerability to unpredictable changes and being at a greater risk for them. Individuals with psychosis can also be more susceptible to contracting COVID-19 disease. OBJECTIVE: This study aimed to investigate whether violent ideation, disruptive behavior, or psychotic symptoms were more prevalent in a population with COVID-19 and did not precede the pandemic. METHODS: In this preliminary study, we analyzed questionnaire responses from a population sample (N=366), received between the end of February 2021 and the start of March 2021 (1 year into the COVID-19 pandemic), regarding COVID-19 illness, violent ideation, disruptive behavior, and psychotic symptoms. Using the Wilcoxon rank sum test followed by multiple comparisons correction, we compared the self-reported frequency of these variables for 3 time windows related to the past 1 month, past 1 month to 1 year, and >1 year ago among the distributions of people who answered whether they tested positive or were diagnosed with COVID-19 by a clinician. We also used multivariable logistic regression with iterative resampling to investigate the relationship between these variables occurring >1 year ago (ie, before the pandemic) and the likelihood of contracting COVID-19. RESULTS: We observed a significantly higher frequency of self-reported violent ideation, disruptive behavior, and psychotic symptoms, for all 3 time windows of people who tested positive or were diagnosed with COVID-19 by a clinician. Using multivariable logistic regression, we observed 72% to 94% model accuracy for an increased incidence of COVID-19 in participants who reported violent ideation, disruptive behavior, or psychotic symptoms >1 year ago. CONCLUSIONS: This preliminary study found that people who reported a test or clinician diagnosis of COVID-19 also reported higher frequencies of violent ideation, disruptive behavior, or psychotic symptoms across multiple time windows, indicating that they were not likely to be the result of COVID-19. In parallel, participants who reported these behaviors >1 year ago (ie, before the pandemic) were more likely to be diagnosed with COVID-19, suggesting that violent ideation, disruptive behavior, in addition to psychotic symptoms, were associated with COVID-19 with an approximately 70% to 90% likelihood.

12.
Healthcare (Basel) ; 10(2)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35206889

ABSTRACT

Monitoring and treatment of severely ill COVID-19 patients in the ICU poses many challenges. The effort to understand the pathophysiology and progress of the disease requires high-quality annotated multi-parameter databases. We present CoCross, a platform that enables the monitoring and fusion of clinical information from in-ICU COVID-19 patients into an annotated database. CoCross consists of three components: (1) The CoCross4Pros native android application, a modular application, managing the interaction with portable medical devices, (2) the cloud-based data management services built-upon HL7 FHIR and ontologies, (3) the web-based application for intensivists, providing real-time review and analytics of the acquired measurements and auscultations. The platform has been successfully deployed since June 2020 in two ICUs in Greece resulting in a dynamic unified annotated database integrating clinical information with chest sounds and diagnostic imaging. Until today multisource data from 176 ICU patients were acquired and imported in the CoCross database, corresponding to a five-day average monitoring period including a dataset with 3477 distinct auscultations. The platform is well accepted and positively rated by the users regarding the overall experience.

13.
Sensors (Basel) ; 22(3)2022 Feb 06.
Article in English | MEDLINE | ID: mdl-35161977

ABSTRACT

Respiratory diseases constitute one of the leading causes of death worldwide and directly affect the patient's quality of life. Early diagnosis and patient monitoring, which conventionally include lung auscultation, are essential for the efficient management of respiratory diseases. Manual lung sound interpretation is a subjective and time-consuming process that requires high medical expertise. The capabilities that deep learning offers could be exploited in order that robust lung sound classification models can be designed. In this paper, we propose a novel hybrid neural model that implements the focal loss (FL) function to deal with training data imbalance. Features initially extracted from short-time Fourier transform (STFT) spectrograms via a convolutional neural network (CNN) are given as input to a long short-term memory (LSTM) network that memorizes the temporal dependencies between data and classifies four types of lung sounds, including normal, crackles, wheezes, and both crackles and wheezes. The model was trained and tested on the ICBHI 2017 Respiratory Sound Database and achieved state-of-the-art results using three different data splitting strategies-namely, sensitivity 47.37%, specificity 82.46%, score 64.92% and accuracy 73.69% for the official 60/40 split, sensitivity 52.78%, specificity 84.26%, score 68.52% and accuracy 76.39% using interpatient 10-fold cross validation, and sensitivity 60.29% and accuracy 74.57% using leave-one-out cross validation.


Subject(s)
Quality of Life , Respiratory Sounds , Auscultation , Humans , Lung/diagnostic imaging , Neural Networks, Computer , Respiratory Sounds/diagnosis
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 349-353, 2021 11.
Article in English | MEDLINE | ID: mdl-34891307

ABSTRACT

Patients suffering from pulmonary diseases typically exhibit pathological lung ventilation in terms of homogeneity. Electrical Impedance Tomography (EIT) is a non- invasive imaging method that allows to analyze and quantify the distribution of ventilation in the lungs. In this article, we present a new approach to promote the use of EIT data and the implementation of new clinical applications for differential diagnosis, with the development of several machine learning models to discriminate between EIT data from healthy and nonhealthy subjects. EIT data from 16 subjects were acquired: 5 healthy and 11 non-healthy subjects (with multiple pulmonary conditions). Preliminary results have shown accuracy percentages of 66% in challenging evaluation scenarios. The results suggest that the pairing of EIT feature engineering methods with machine learning methods could be further explored and applied in the diagnostic and monitoring of patients suffering from lung diseases. Also, we introduce the use of a new feature in the context of EIT data analysis (Impedance Curve Correlation).


Subject(s)
Pulmonary Ventilation , Tomography , Electric Impedance , Humans , Machine Learning , Tomography, X-Ray Computed
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 512-516, 2021 11.
Article in English | MEDLINE | ID: mdl-34891345

ABSTRACT

Mechanically ventilated patients typically exhibit abnormal respiratory sounds. Squawks are short inspiratory adventitious sounds that may occur in patients with pneumonia, such as COVID-19 patients. In this work we devised a method for squawk detection in mechanically ventilated patients by developing algorithms for respiratory cycle estimation, squawk candidate identification, feature extraction, and clustering. The best classifier reached an F1 of 0.48 at the sound file level and an F1 of 0.66 at the recording session level. These preliminary results are promising, as they were obtained in noisy environments. This method will give health professionals a new feature to assess the potential deterioration of critically ill patients.


Subject(s)
COVID-19 , Respiratory Sounds , Critical Illness , Humans , Respiration, Artificial , SARS-CoV-2
16.
Diagnostics (Basel) ; 11(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34943465

ABSTRACT

Over the past two decades, several studies have measured olfactory performance in Mild Cognitive Impairment (MCI). Deficits are observed in multiple olfactory domains, including odour detection threshold, identification, discrimination, and memory. In this study, the psychophysiological Sniffin' Sticks smell screening test was administered to examine olfactory functioning in 145 older adults with MCI, a group with MCI and chronic comorbid conditions, and a healthy age-matched comparison group. We hypothesised that olfactory performance will deteriorate in the two MCI groups compared to the control group, even after assessing the known contributions of age and gender. The higher olfactory deterioration in the group with the MCI and the comorbidities in the first year disappeared in the second. This could mean that early consideration of the potential effect of other comorbidities that might affect olfaction should be taken and addressed, as they could easily mask the effect of cognitive decline and/or contribute to it. This study also found higher deterioration in smell identification in participants with MCI, as has been found repeatedly in similar research. Olfactory identification seems to be a more robust marker for discriminating people with MCI and without, and even discriminating between those with MCI and having other health problems.

17.
Stud Health Technol Inform ; 287: 99-103, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34795090

ABSTRACT

The process of maintenance of an underlying semantic model that supports data management and addresses the interoperability challenges in the domain of telemedicine and integrated care is not a trivial task when performed manually. We present a methodology that leverages the provided serializations of the Health Level Seven International (HL7) Fast Health Interoperability Resources (FHIR) specification to generate a fully functional OWL ontology along with the semantic provisions for maintaining functionality upon future changes of the standard. The developed software makes a complete conversion of the HL7 FHIR Resources along with their properties and their semantics and restrictions. It covers all FHIR data types (primitive and complex) along with all defined resource types. It can operate to build an ontology from scratch or to update an existing ontology, providing the semantics that are needed, to preserve information described using previous versions of the standard. All the results based on the latest version of HL7 FHIR as a Web Ontology Language (OWL-DL) ontology are publicly available for reuse and extension.


Subject(s)
Health Level Seven , Telemedicine , Data Management , Electronic Health Records , Semantics
18.
Diagnostics (Basel) ; 11(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34574035

ABSTRACT

Early identification of patients at risk for paroxysmal atrial fibrillation (PAF) is essential to attain optimal treatment and a favorable prognosis. We compared the performance of a beat-to-beat (B2B) P-wave analysis with that of standard P-wave indices (SPWIs) in identifying patients prone to PAF. To this end, 12-lead ECG and 10 min vectorcardiogram (VCG) recordings were obtained from 33 consecutive, antiarrhythmic therapy naïve patients, with a short history of low burden PAF, and from 56 age- and sex-matched individuals with no AF history. For both groups, SPWIs were calculated, while the VCG recordings were analyzed on a B2B basis, and the P-waves were classified to a primary or secondary morphology. Wavelet transform was used to further analyze P-wave signals of main morphology. Univariate analysis revealed that none of the SPWIs performed acceptably in PAF detection, while five B2B features reached an AUC above 0.7. Moreover, multivariate logistic regression analysis was used to develop two classifiers-one based on B2B analysis derived features and one using only SPWIs. The B2B classifier was found to be superior to SPWIs classifier; B2B AUC: 0.849 (0.754-0.917) vs. SPWIs AUC: 0.721 (0.613-0.813), p value: 0.041. Therefore, in the studied population, the proposed B2B P-wave analysis outperforms SPWIs in detecting patients with PAF while in sinus rhythm. This can be used in further clinical trials regarding the prognosis of such patients.

19.
JMIR Mhealth Uhealth ; 9(7): e26290, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34048353

ABSTRACT

BACKGROUND: Obesity is a major public health problem globally and in Europe. The prevalence of childhood obesity is also soaring. Several parameters of the living environment are contributing to this increase, such as the density of fast food retailers, and thus, preventive health policies against childhood obesity must focus on the environment to which children are exposed. Currently, there are no systems in place to objectively measure the effect of living environment parameters on obesogenic behaviors and obesity. The H2020 project "BigO: Big Data Against Childhood Obesity" aims to tackle childhood obesity by creating new sources of evidence based on big data. OBJECTIVE: This paper introduces the Obesity Prevention dashboard (OPdashboard), implemented in the context of BigO, which offers an interactive data platform for the exploration of objective obesity-related behaviors and local environments based on the data recorded using the BigO mHealth (mobile health) app. METHODS: The OPdashboard, which can be accessed on the web, allows for (1) the real-time monitoring of children's obesogenic behaviors in a city area, (2) the extraction of associations between these behaviors and the local environment, and (3) the evaluation of interventions over time. More than 3700 children from 33 schools and 2 clinics in 5 European cities have been monitored using a custom-made mobile app created to extract behavioral patterns by capturing accelerometer and geolocation data. Online databases were assessed in order to obtain a description of the environment. The dashboard's functionality was evaluated during a focus group discussion with public health experts. RESULTS: The preliminary association outcomes in 2 European cities, namely Thessaloniki, Greece, and Stockholm, Sweden, indicated a correlation between children's eating and physical activity behaviors and the availability of food-related places or sports facilities close to schools. In addition, the OPdashboard was used to assess changes to children's physical activity levels as a result of the health policies implemented to decelerate the COVID-19 outbreak. The preliminary outcomes of the analysis revealed that in urban areas the decrease in physical activity was statistically significant, while a slight increase was observed in the suburbs. These findings indicate the importance of the availability of open spaces for behavioral change in children. Discussions with public health experts outlined the dashboard's potential to aid in a better understanding of the interplay between children's obesogenic behaviors and the environment, and improvements were suggested. CONCLUSIONS: Our analyses serve as an initial investigation using the OPdashboard. Additional factors must be incorporated in order to optimize its use and obtain a clearer understanding of the results. The unique big data that are available through the OPdashboard can lead to the implementation of models that are able to predict population behavior. The OPdashboard can be considered as a tool that will increase our understanding of the underlying factors in childhood obesity and inform the design of regional interventions both for prevention and treatment.


Subject(s)
COVID-19 , Child , Europe , Greece , Humans , SARS-CoV-2 , Sweden
20.
Nutrients ; 13(3)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803093

ABSTRACT

Fast self-reported eating rate (SRER) has been associated with increased adiposity in children and adults. No studies have been conducted among high-school students, and SRER has not been validated vs. objective eating rate (OBER) in such populations. The objectives were to investigate (among high-school student populations) the association between OBER and BMI z-scores (BMIz), the validity of SRER vs. OBER, and potential differences in BMIz between SRER categories. Three studies were conducted. Study 1 included 116 Swedish students (mean ± SD age: 16.5 ± 0.8, 59% females) who were eating school lunch. Food intake and meal duration were objectively recorded, and OBER was calculated. Additionally, students provided SRER. Study 2 included students (n = 50, mean ± SD age: 16.7 ± 0.6, 58% females) from Study 1 who ate another objectively recorded school lunch. Study 3 included 1832 high-school students (mean ± SD age: 15.8 ± 0.9, 51% females) from Sweden (n = 748) and Greece (n = 1084) who provided SRER. In Study 1, students with BMIz ≥ 0 had faster OBER vs. students with BMIz < 0 (mean difference: +7.7 g/min or +27%, p = 0.012), while students with fast SRER had higher OBER vs. students with slow SRER (mean difference: +13.7 g/min or +56%, p = 0.001). However, there was "minimal" agreement between SRER and OBER categories (κ = 0.31, p < 0.001). In Study 2, OBER during lunch 1 had a "large" correlation with OBER during lunch 2 (r = 0.75, p < 0.001). In Study 3, fast SRER students had higher BMIz vs. slow SRER students (mean difference: 0.37, p < 0.001). Similar observations were found among both Swedish and Greek students. For the first time in high-school students, we confirm the association between fast eating and increased adiposity. Our validation analysis suggests that SRER could be used as a proxy for OBER in studies with large sample sizes on a group level. With smaller samples, OBER should be used instead. To assess eating rate on an individual level, OBER can be used while SRER should be avoided.


Subject(s)
Body Mass Index , Diet Surveys/statistics & numerical data , Feeding Behavior , Self Report/statistics & numerical data , Students/statistics & numerical data , Time Factors , Adolescent , Body Weight , Cross-Sectional Studies , Eating , Female , Greece/epidemiology , Humans , Lunch , Male , Pediatric Obesity/epidemiology , Pediatric Obesity/etiology , Reproducibility of Results , Sweden/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...