Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
J Gen Physiol ; 118(6): 711-34, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11723163

ABSTRACT

The COOH-terminal S9-S10 tail domain of large conductance Ca(2+)-activated K(+) (BK) channels is a major determinant of Ca(2+) sensitivity (Schreiber, M., A. Wei, A. Yuan, J. Gaut, M. Saito, and L. Salkoff. 1999. Nat. Neurosci. 2:416-421). To investigate whether the tail domain also modulates Ca(2+)-independent properties of BK channels, we explored the functional differences between the BK channel mSlo1 and another member of the Slo family, mSlo3 (Schreiber, M., A. Yuan, and L. Salkoff. 1998. J. Biol. Chem. 273:3509-3516). Compared with mSlo1 channels, mSlo3 channels showed little Ca(2+) sensitivity, and the mean open time, burst duration, gaps between bursts, and single-channel conductance of mSlo3 channels were only 32, 22, 41, and 37% of that for mSlo1 channels, respectively. To examine which channel properties arise from the tail domain, we coexpressed the core of mSlo1 with either the tail domain of mSlo1 or the tail domain of mSlo3 channels, and studied the single-channel currents. Replacing the mSlo1 tail with the mSlo3 tail resulted in the following: increased open probability in the absence of Ca(2+); reduced the Ca(2+) sensitivity greatly by allowing only partial activation by Ca(2+) and by reducing the Hill coefficient for Ca(2+) activation; decreased the voltage dependence approximately 28%; decreased the mean open time two- to threefold; decreased the mean burst duration three- to ninefold; decreased the single-channel conductance approximately 14%; decreased the K(d) for block by TEA(i) approximately 30%; did not change the minimal numbers of three to four open and five to seven closed states entered during gating; and did not change the major features of the dependency between adjacent interval durations. These observations support a modular construction of the BK channel in which the tail domain modulates the gating kinetics and conductance properties of the voltage-dependent core domain, in addition to determining most of the high affinity Ca(2+) sensitivity.


Subject(s)
Ion Channel Gating/physiology , Potassium Channels, Calcium-Activated , Potassium Channels/physiology , Animals , Calcium/pharmacokinetics , Calcium/pharmacology , Cell Culture Techniques , Electrophysiology , Female , Kinetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Large-Conductance Calcium-Activated Potassium Channels , Models, Theoretical , Oocytes/physiology , Xenopus laevis
3.
Biophys J ; 81(4): 2082-99, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11566780

ABSTRACT

Xenopus oocytes express mechanosensitive (MS(XO)) channels that can be studied in excised patches of membrane with the patch-clamp technique. This study examines the steady-state kinetic gating properties of MS(XO) channels using detailed single-channel analysis. The open and closed one-dimensional dwell-time distributions were described by the sums of 2-3 open and 5-7 closed exponential components, respectively, indicating that the channels enter at least 2-3 open and 5-7 closed kinetic states during gating. Dependency plots revealed that the durations of adjacent open and closed intervals were correlated, indicating two or more gateway states in the gating mechanism for MS channels. Maximum likelihood fitting of two-dimensional dwell-time distributions to both generic and specific models was used to examine gating mechanism and rank models. A kinetic scheme with five closed and five open states, in which each closed state could make a direct transition to an open state (two-tiered model) could account for the major features of the single-channel data. Two-tiered models that allowed direct transitions to subconductance open states in addition to the fully open state were also consistent with multiple gateway states. Thus, the gating mechanism of MS(XO) channels differs from the sequential (linear) gating mechanisms considered for MS channels in bacteria, chick skeletal muscle, and Necturus proximal tubule.


Subject(s)
Ion Channel Gating/physiology , Ion Channels/physiology , Models, Biological , Oocytes/physiology , Animals , Electrophysiology , Female , Ion Channels/ultrastructure , Kinetics , Membrane Potentials/physiology , Stress, Mechanical , Xenopus laevis
5.
J Gen Physiol ; 115(6): 719-36, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10828246

ABSTRACT

Coexpression of the beta(1) subunit with the alpha subunit (mSlo) of BK channels increases the apparent Ca(2+) sensitivity of the channel. This study investigates whether the mechanism underlying the increased Ca(2+) sensitivity requires Ca(2+), by comparing the gating in 0 Ca(2+)(i) of BK channels composed of alpha subunits to those composed of alpha+beta(1) subunits. The beta(1) subunit increased burst duration approximately 20-fold and the duration of gaps between bursts approximately 3-fold, giving an approximately 10-fold increase in open probability (P(o)) in 0 Ca(2+)(i). The effect of the beta(1) subunit on increasing burst duration was little changed over a wide range of P(o) achieved by varying either Ca(2+)(i) or depolarization. The effect of the beta(1) subunit on increasing the durations of the gaps between bursts in 0 Ca(2+)(i) was preserved over a range of voltage, but was switched off as Ca(2+)(i) was increased into the activation range. The Ca(2+)-independent, beta(1) subunit-induced increase in burst duration accounted for 80% of the leftward shift in the P(o) vs. Ca(2+)(i) curve that reflects the increased Ca(2+) sensitivity induced by the beta(1) subunit. The Ca(2+)-dependent effect of the beta(1) subunit on the gaps between bursts accounted for the remaining 20% of the leftward shift. Our observation that the major effects of the beta(1) subunit are independent of Ca(2+)(i) suggests that the beta(1) subunit mainly alters the energy barriers of Ca(2+)-independent transitions. The changes in gating induced by the beta(1) subunit differ from those induced by depolarization, as increasing P(o) by depolarization or by the beta(1) subunit gave different gating kinetics. The complex gating kinetics for both alpha and alpha+beta(1) channels in 0 Ca(2+)(i) arise from transitions among two to three open and three to five closed states and are inconsistent with Monod-Wyman-Changeux type models, which predict gating among only one open and one closed state in 0 Ca(2+)(i).


Subject(s)
Calcium/pharmacology , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Potassium Channels, Calcium-Activated , Potassium Channels/physiology , Cell Line , Dose-Response Relationship, Drug , Electric Stimulation , Electrophysiology , Humans , Kidney/cytology , Kinetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Large-Conductance Calcium-Activated Potassium Channels , Membrane Potentials/drug effects , Membrane Potentials/physiology , Models, Molecular , Potassium Channels/chemistry , Protein Structure, Tertiary , Stimulation, Chemical
6.
J Gen Physiol ; 116(1): 75-99, 2000 Jul 01.
Article in English | MEDLINE | ID: mdl-10871641

ABSTRACT

The voltage- and Ca2+-dependent gating mechanism of large-conductance Ca2+-activated K+ (BK) channels from cultured rat skeletal muscle was studied using single-channel analysis. Channel open probability (Po) increased with depolarization, as determined by limiting slope measurements (11 mV per e-fold change in Po; effective gating charge, q(eff), of 2.3 +/- 0.6 e(o)). Estimates of q(eff) were little changed for intracellular Ca2+ (Ca2+(i)) ranging from 0.0003 to 1,024 microM. Increasing Ca2+(i) from 0.03 to 1,024 microM shifted the voltage for half maximal activation (V(1/2)) 175 mV in the hyperpolarizing direction. V(1/2) was independent of Ca2+(i) for Ca2+(i) < or = 0.03 microM, indicating that the channel can be activated in the absence of Ca2+(i). Open and closed dwell-time distributions for data obtained at different Ca2+(i) and voltage, but at the same Po, were different, indicating that the major action of voltage is not through concentrating Ca2+ at the binding sites. The voltage dependence of Po arose from a decrease in the mean closing rate with depolarization (q(eff) = -0.5 e(o)) and an increase in the mean opening rate (q(eff) = 1.8 e(o)), consistent with voltage-dependent steps in both the activation and deactivation pathways. A 50-state two-tiered model with separate voltage- and Ca2+-dependent steps was consistent with the major features of the voltage and Ca2+ dependence of the single-channel kinetics over wide ranges of Ca2+(i) (approximately 0 through 1,024 microM), voltage (+80 to -80 mV), and Po (10(-4) to 0.96). In the model, the voltage dependence of the gating arises mainly from voltage-dependent transitions between closed (C-C) and open (O-O) states, with less voltage dependence for transitions between open and closed states (C-O), and with no voltage dependence for Ca2+-binding and unbinding. The two-tiered model can serve as a working hypothesis for the Ca2+- and voltage-dependent gating of the BK channel.


Subject(s)
Calcium/metabolism , Ion Channel Gating/physiology , Muscle, Skeletal/metabolism , Potassium Channels/metabolism , Animals , Cells, Cultured , Membrane Potentials/physiology , Models, Biological , Muscle, Skeletal/cytology , Rats
7.
Proc Natl Acad Sci U S A ; 96(25): 14594-9, 1999 Dec 07.
Article in English | MEDLINE | ID: mdl-10588750

ABSTRACT

The patch-clamp technique allows currents to be recorded through single ion channels in patches of cell membrane in the tips of glass pipettes. When recording, voltage is typically applied across the membrane patch to drive ions through open channels and to probe the voltage-sensitivity of channel activity. In this study, we used video microscopy and single-channel recording to show that prolonged depolarization of a membrane patch in borosilicate pipettes results in delayed slow displacement of the membrane into the pipette and that this displacement is associated with the activation of mechanosensitive (MS) channels in the same patch. The membrane displacement, approximately 1 micrometer with each prolonged depolarization, occurs after variable delays ranging from tens of milliseconds to many seconds and is correlated in time with activation of MS channels. Increasing the voltage step shortens both the delay to membrane displacement and the delay to activation. Preventing depolarization-induced membrane displacement by applying positive pressure to the shank of the pipette or by coating the tips of the borosilicate pipettes with soft glass prevents the depolarization-induced activation of MS channels. The correlation between depolarization-induced membrane displacement and activation of MS channels indicates that the membrane displacement is associated with sufficient membrane tension to activate MS channels. Because membrane tension can modulate the activity of various ligand and voltage-activated ion channels as well as some transporters, an apparent voltage dependence of a channel or transporter in a membrane patch in a borosilicate pipette may result from voltage-induced tension rather than from direct modulation by voltage.


Subject(s)
Ion Channels/physiology , Animals , Female , Membrane Potentials , Patch-Clamp Techniques , Stress, Mechanical , Xenopus laevis
9.
J Gen Physiol ; 114(1): 93-124, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10398695

ABSTRACT

The Ca2+-dependent gating mechanism of large-conductance calcium-activated K+ (BK) channels from cultured rat skeletal muscle was examined from low (4 microM) to high (1,024 microM) intracellular concentrations of calcium (Ca2+i) using single-channel recording. Open probability (Po) increased with increasing Ca2+i (K0. 5 11.2 +/- 0.3 microM at +30 mV, Hill coefficient of 3.5 +/- 0.3), reaching a maximum of approximately 0.97 for Ca2+i approximately 100 microM. Increasing Ca2+i further to 1,024 microM had little additional effect on either Po or the single-channel kinetics. The channels gated among at least three to four open and four to five closed states at high levels of Ca2+i (>100 microM), compared with three to four open and five to seven closed states at lower Ca2+i. The ability of kinetic schemes to account for the single-channel kinetics was examined with simultaneous maximum likelihood fitting of two-dimensional (2-D) dwell-time distributions obtained from low to high Ca2+i. Kinetic schemes drawn from the 10-state Monod-Wyman-Changeux model could not describe the dwell-time distributions from low to high Ca2+i. Kinetic schemes drawn from Eigen's general model for a ligand-activated tetrameric protein could approximate the dwell-time distributions but not the dependency (correlations) between adjacent intervals at high Ca2+i. However, models drawn from a general 50 state two-tiered scheme, in which there were 25 closed states on the upper tier and 25 open states on the lower tier, could approximate both the dwell-time distributions and the dependency from low to high Ca2+i. In the two-tiered model, the BK channel can open directly from each closed state, and a minimum of five open and five closed states are available for gating at any given Ca2+i. A model that assumed that the apparent Ca2+-binding steps can reach a maximum rate at high Ca2+i could also approximate the gating from low to high Ca2+i. The considered models can serve as working hypotheses for the gating of BK channels.


Subject(s)
Ion Channel Gating/physiology , Models, Biological , Potassium Channels, Calcium-Activated , Potassium Channels/metabolism , Animals , Calcium/pharmacology , Electric Conductivity , Kinetics , Large-Conductance Calcium-Activated Potassium Channels , Ligands , Osmolar Concentration , Potassium Channels/drug effects , Potassium Channels/physiology , Rats
10.
Biophys J ; 76(6): 3099-117, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10354435

ABSTRACT

The Ca2+-dependent gating mechanism of cloned BK channels from Drosophila (dSlo) was studied. Both a natural variant (A1/C2/E1/G3/IO) and a mutant (S942A) were expressed in Xenopus oocytes, and single-channel currents were recorded from excised patches of membrane. Stability plots were used to define stable segments of data. Unlike native BK channels from rat skeletal muscle in which increasing internal Ca2+ concentration (Cai2+) in the range of 5 to 30 microM increases mean open time, increasing Cai2+ in this range for dSlo had little effect on mean open time. However, further increases in Cai2+ to 300 or 3000 microM then typically increased dSlo mean open time. Kinetic schemes for the observed Ca2+-dependent gating kinetics of dSlo were evaluated by fitting two-dimensional dwell-time distributions using maximum likelihood techniques and by comparing observed dependency plots with those predicted by the models. Previously described kinetic schemes that largely account for the Ca2+-dependent kinetics of native BK channels from rat skeletal muscle did not adequately describe the Ca2+ dependence of dSlo. An expanded version of these schemes which, in addition to the Ca2+-activation steps, permitted a Ca2+-facilitated transition from each open state to a closed state, could approximate the Ca2+-dependent kinetics of dSlo, suggesting that Ca2+ may exert dual effects on gating.


Subject(s)
Calcium/metabolism , Ion Channel Gating , Potassium Channels, Calcium-Activated , Potassium Channels/metabolism , Animals , Biophysical Phenomena , Biophysics , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins , Female , Genetic Variation , In Vitro Techniques , Kinetics , Large-Conductance Calcium-Activated Potassium Channels , Models, Biological , Oocytes/metabolism , Point Mutation , Potassium Channels/genetics , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Xenopus laevis
11.
Biophys J ; 76(6): 3118-27, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10354436

ABSTRACT

To investigate the mechanism for the delayed activation by voltage of the predominant mechanosensitive (MS) channel in Xenopus oocytes, currents were recorded from on-cell and excised patches of membrane with the patch clamp technique and from intact oocytes with the two-electrode voltage clamp technique. MS channels could be activated by stretch in inside-out, on-cell, and outside-out patch configurations, using pipettes formed of either borosilicate or soft glass. In inside-out patches formed with borosilicate glass pipettes, depolarizing voltage steps activated MS channels in a cooperative manner after delays of seconds. This voltage-dependent activation was not observed for outside-out patches. Voltage-dependent activation was also not observed when the borosilicate pipettes were either replaced with soft glass pipettes or coated with soft glass. When depolarizing voltage steps were applied to the whole oocyte with a two-electrode voltage clamp, currents that could be attributed to MS channels were not observed. Yet the same depolarizing steps activated MS channels in on-cell patches formed with borosilicate pipettes on the same oocyte. These observations suggest that the delayed cooperative activation of MS channels by depolarization is not an intrinsic property of the channels, but requires interaction between the membrane and patch pipette.


Subject(s)
Ion Channels/metabolism , Oocytes/metabolism , Animals , Biomechanical Phenomena , Biophysical Phenomena , Biophysics , Female , Glass , In Vitro Techniques , Membrane Potentials , Patch-Clamp Techniques/instrumentation , Xenopus laevis
12.
J Gen Physiol ; 113(3): 425-40, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10051518

ABSTRACT

Coexpression of the beta subunit (KV,Cabeta) with the alpha subunit of mammalian large conductance Ca2+- activated K+ (BK) channels greatly increases the apparent Ca2+ sensitivity of the channel. Using single-channel analysis to investigate the mechanism for this increase, we found that the beta subunit increased open probability (Po) by increasing burst duration 20-100-fold, while having little effect on the durations of the gaps (closed intervals) between bursts or on the numbers of detected open and closed states entered during gating. The effect of the beta subunit was not equivalent to raising intracellular Ca2+ in the absence of the beta subunit, suggesting that the beta subunit does not act by increasing all the Ca2+ binding rates proportionally. The beta subunit also inhibited transitions to subconductance levels. It is the retention of the BK channel in the bursting states by the beta subunit that increases the apparent Ca2+ sensitivity of the channel. In the presence of the beta subunit, each burst of openings is greatly amplified in duration through increases in both the numbers of openings per burst and in the mean open times. Native BK channels from cultured rat skeletal muscle were found to have bursting kinetics similar to channels expressed from alpha subunits alone.


Subject(s)
Calcium Signaling/physiology , Ion Channel Gating/physiology , Potassium Channels, Calcium-Activated , Potassium Channels/physiology , Animals , Cell Line , Humans , In Vitro Techniques , Kidney/drug effects , Kidney/metabolism , Kinetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Large-Conductance Calcium-Activated Potassium Channel beta Subunits , Large-Conductance Calcium-Activated Potassium Channels , Muscle, Skeletal/metabolism , Potassium Channels/biosynthesis , Rats
14.
J Gen Physiol ; 111(6): 751-80, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9607935

ABSTRACT

Mechanisms for the Ca2+-dependent gating of single large-conductance Ca2+-activated K+ channels from cultured rat skeletal muscle were developed using two-dimensional analysis of single-channel currents recorded with the patch clamp technique. To extract and display the essential kinetic information, the kinetic structure, from the single channel currents, adjacent open and closed intervals were binned as pairs and plotted as two-dimensional dwell-time distributions, and the excesses and deficits of the interval pairs over that expected for independent pairing were plotted as dependency plots. The basic features of the kinetic structure were generally the same among single large-conductance Ca2+-activated K+ channels, but channel-specific differences were readily apparent, suggesting heterogeneities in the gating. Simple gating schemes drawn from the Monod- Wyman-Changeux (MWC) model for allosteric proteins could approximate the basic features of the Ca2+ dependence of the kinetic structure. However, consistent differences between the observed and predicted dependency plots suggested that additional brief lifetime closed states not included in MWC-type models were involved in the gating. Adding these additional brief closed states to the MWC-type models, either beyond the activation pathway (secondary closed states) or within the activation pathway (intermediate closed states), improved the description of the Ca2+ dependence of the kinetic structure. Secondary closed states are consistent with the closing of secondary gates or channel block. Intermediate closed states are consistent with mechanisms in which the channel activates by passing through a series of intermediate conformations between the more stable open and closed states. It is the added secondary or intermediate closed states that give rise to the majority of the brief closings (flickers) in the gating.


Subject(s)
Calcium/physiology , Ion Channel Gating/physiology , Potassium Channels/metabolism , Algorithms , Animals , Cells, Cultured , Computer Simulation , Electric Stimulation , Electrophysiology , Kinetics , Membrane Potentials/physiology , Models, Biological , Muscle, Skeletal/metabolism , Patch-Clamp Techniques , Rats
15.
J Gen Physiol ; 111(2): 343-62, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9450947

ABSTRACT

Ba2+ block of large conductance Ca2+-activated K+ channels was studied in patches of membrane excised from cultures of rat skeletal muscle using the patch clamp technique. Under conditions in which a blocking Ba2+ ion would dissociate to the external solution (150 mM N-methyl-D-glucamine+o, 500 mM K+i, 10 microM Ba2+i, +30 mV, and 100 microM Ca2+i to fully activate the channel), Ba2+ blocks with a mean duration of approximately 2 s occurred, on average, once every approximately 100 ms of channel open time. Of these Ba2+ blocks, 78% terminated with a single step in the current to the fully open level and 22% terminated with a transition to a subconductance level at approximately 0.26 of the fully open level (preopening) before stepping to the fully open level. Only one apparent preclosing was observed in approximately 10,000 Ba2+ blocks. Thus, the preopenings represent Ba2+-induced time-irreversible subconductance gating. The fraction of Ba2+ blocks terminating with a preopening and the duration of preopenings (exponentially distributed, mean = 0.75 ms) appeared independent of changes in [Ba2+]i or membrane potential. The fractional conductance of the preopenings increased from 0.24 at +10 mV to 0.39 at +90 mV. In contrast, the average subconductance level during normal gating in the absence of Ba2+ was independent of membrane potential, suggesting different mechanisms for preopenings and normal subconductance levels. Preopenings were also observed with 10 mM Ba2+o and no added Ba2+i. Adding K+, Rb+, or Na+ to the external solution decreased the fraction of Ba2+ blocks with preopenings, with K+ and Rb+ being more effective than Na+. These results are consistent with models in which the blocking Ba2+ ion either induces a preopening gate, and then dissociates to the external solution, or moves to a site located on the external side of the Ba2+ blocking site and acts directly as the preopening gate.


Subject(s)
Barium/pharmacology , Calcium/physiology , Ion Channel Gating/drug effects , Potassium Channel Blockers , Potassium Channels/metabolism , Animals , Cells, Cultured , Electrophysiology , Female , Membrane Potentials/physiology , Muscle, Skeletal/cytology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Time Factors
16.
Biophys J ; 72(6): 2524-44, 1997 Jun.
Article in English | MEDLINE | ID: mdl-9168029

ABSTRACT

Correlations between the durations of adjacent open and shut intervals recorded from ion channels contain information about the underlying gating mechanism. This study presents an additional approach to extracting the correlation information. Detailed correlation information is obtained directly from single-channel data and quantified in a manner that can provide insight into the connections among the states underlying the gating. The information is obtained independently of any specific kinetic scheme, except for the general assumption of Markov gating. The durations of adjacent open and shut intervals are binned into two-dimensional (2-D) dwell-time distributions. The 2-D (joint) distributions are fitted with sums of 2-D exponential components to determine the number of 2-D components, their volumes, and their open and closed time constants. The dependency of each 2-D component is calculated by comparing its observed volume to the volume that would be expected if open and shut intervals paired independently. The estimated component dependencies are then used to suggest gating mechanisms and to provide a powerful means of examining whether proposed gating mechanisms have the correct connections among states. The sensitivity of the 2-D method can identify hidden components and dependencies that can go undetected by previous correlation methods.


Subject(s)
Ion Channel Gating/physiology , Potassium Channels, Calcium-Activated , Biophysical Phenomena , Biophysics , Computer Simulation , In Vitro Techniques , Kinetics , Large-Conductance Calcium-Activated Potassium Channels , Likelihood Functions , Models, Biological , Potassium Channels/metabolism
17.
J Physiol ; 505 ( Pt 3): 551-69, 1997 Dec 15.
Article in English | MEDLINE | ID: mdl-9457635

ABSTRACT

1. The relationship between stretch and voltage activation of mechanosensitive (MS) channels from Xenopus oocytes was studied in excised patches of membrane using the patch clamp technique. 2. As is characteristic of MS channels to oocytes, stretching the membrane by applying negative pressure to the patch pipette at -50 mV activated the MS channels rapidly. The channels then deactivated rapidly when the stretch was removed. The stretch-activated MS channels entered a main conductance level (45 pS) and one or more subconductance levels in the range of about 75-90% of the main conductance level. 3. In the absence of stretch, a depolarizing step from -50 to +50 mV activated apparent MS channels after long delays of typically 1-20 s (range, 100 ms to 6 min). Upon repolarization, the channels deactivated slowly with a single exponential (mean time constant of 4 s) or double exponential (mean time constants of 0.8 and 3 s) time course. 4. Delayed activation with depolarization and slow deactivation upon repolarization were also observed for apparent MS channels in on-cell patches. 5. The voltage-activated channels were cation selective and had the same selectivity and conductance levels as the stretch activated MS channels. Applying stretch during voltage-induced channel activity did not activate any additional channels, and the same maximal number of channels were typically activated by either stretch or by voltage. These observations suggest that voltage activates the same MS channels that are activated by stretch. 6. The opening of MS channels following steps to +50 mV occurred in an apparently co-operative manner in 70% of the excised patches containing multiple MS channels. 7. In the absence of stretch, the opening frequency and open probability of MS channels increased with depolarization in the examined voltage range of -60 to -20 mV. 8. Applying a brief stretch during the delay to activation at +50 mV activated the MS channels rapidly, which then remained active when the stretch was removed. In contrast, applying a brief stretch during the slow deactivation induced by stepping from +50 to -50 mV abruptly terminated the voltage induced channel activity upon release of the stretch and inhibited subsequent depolarization-induced activity. 9. Depolarizing steps from -50 to +50 mV inhibited any spontaneous channel activity that was present before the depolarizing step. If the potential was stepped back to -50 mV before the channels activated at +50 mV, a delayed activation could occur at -50 mV, followed by normal deactivation, indicating that the depolarizing step initiated activation processes that were initially masked by inhibition. 10. These observations suggest that voltage and stretch can induce different functional gating configurations of MS channels with associated structures, and that these different gating configurations can interconvert.


Subject(s)
Ion Channel Gating/physiology , Ion Channels/physiology , Mechanoreceptors/physiology , Animals , Electric Stimulation , Membrane Potentials/physiology , Oocytes , Patch-Clamp Techniques , Stress, Mechanical , Xenopus laevis
18.
Biophys J ; 71(1): 2640-51, 1996 Jul.
Article in English | MEDLINE | ID: mdl-9643949

ABSTRACT

Cloned large conductance Ca2+-activated K+ channels (BK or maxi-K+ channels) from Drosophila (dSlo) were expressed in Xenopus oocytes and studied in excised membrane patches with the patch-clamp technique. Both a natural variant and a mutant that eliminated a putative cyclic AMP-dependent protein kinase phosphorylation site exhibited large, slow fluctuations in open probability with time. These fluctuations, termed "wanderlust kinetics," occurred with a time course of tens of seconds to minutes and had kinetic properties inconsistent with simple gating models. Wanderlust kinetics was still observed in the presence of 5mM caffeine or 50 nM thapsigargin, or when the Ca2+ buffering capacity of the solution was increased by the addition of 5 mM HEDTA, suggesting that the wanderlust kinetics did not arise from Ca2+ release from caffeine and thapsigargin sensitive internal stores in the excised patch. The slow changes in kinetics associated with wanderlust kinetics could be generated with a discrete-state Markov model with transitions among three or more kinetic modes with different levels of open probability. To average out the wanderlust kinetics, large amounts of data were analyzed and demonstrated up to a threefold difference in the [Ca2+]i required for an open probability of 0.5 among channels expressed from the same injected mRNA. These findings indicate that cloned dSlo channels in excised patches from Xenopus oocytes can exhibit large variability in gating properties, both within a single channel and among channels.


Subject(s)
Calcium/metabolism , Drosophila/metabolism , Potassium Channels/metabolism , Animals , Biophysical Phenomena , Biophysics , Caffeine/pharmacology , Drosophila/genetics , Edetic Acid/analogs & derivatives , Edetic Acid/pharmacology , Electric Conductivity , Female , In Vitro Techniques , Ion Channel Gating , Kinetics , Models, Biological , Oocytes/metabolism , Patch-Clamp Techniques , Potassium Channels/drug effects , Potassium Channels/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thapsigargin/pharmacology , Xenopus
19.
J Physiol ; 493 ( Pt 3): 673-89, 1996 Jun 15.
Article in English | MEDLINE | ID: mdl-8799891

ABSTRACT

1. Large-conductance calcium-activated K+ channels (BK channels) often display long closed intervals at higher levels of Ca2+. To gain further insight into possible mechanisms for these intervals, currents were recorded from single BK channels, using the patch clamp technique, from patches of membrane excised from primary cultures of rat skeletal muscle. 2. High intracellular calcium concentrations ([Ca2+]i; 10-1000 microM) induced a low activity mode and revealed isolated long shut intervals. Neither of these phenomena were due to the Ba2+ that typically contaminates reagent grade salts. 3. The low activity mode was characterized by typically single brief open intervals with mean durations of 0.1 ms, separated by long shut intervals with mean durations of 100 ms. The very low open probability of about 0.001 during the low activity mode would make a sojourn to this mode functionally equivalent to a sojourn to an inactive state. The durations of sojourns in the low activity mode were exponentially distributed, with the mean durations ranging from about 1 s in 10 microM Ca(i)2+, to 4.5 s in 1000 microM Ca(i)2+. With increased filtering, the brief open intervals would escape detection so that a sojourn to the low activity mode would appear as a single shut interval. A typical channel spent less than 5% of its time in the low activity mode for [Ca2+]i < 10 microM. This increased to about 30% for [Ca2+]i > 100-1000 microM. A kinetic model with three closed states and two open states could approximate the gating of the low activity mode. 4. The isolated long shut intervals were not from the low activity mode, suggesting a different underlying mechanism. Their frequency of occurrence of about 0.3 s-1 did not increase with increasing [Ca2+]i, indicating that they did not arise from a slow Ca2+ block. Their durations were exponentially distributed, with a mean of 127 ms, which was independent of [Ca2+]i, suggesting that a single Ca(2+)-independent closed state or block underlies the isolated long shut intervals. At higher [Ca2+]i, up to 60% of the shut time could be spent in the isolated long shut intervals. 5. These observations suggest that activation of BK channels by high [Ca2+]i can be limited by sojourns to a low activity mode and also by isolated long shut intervals, two additional phenomena that will have to be accounted for in the gating of BK channels.


Subject(s)
Calcium/physiology , Muscle, Skeletal/physiology , Potassium Channels/physiology , Animals , Barium/pharmacology , Electrophysiology , Female , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Kinetics , Membrane Potentials/drug effects , Membrane Potentials/physiology , Muscle, Skeletal/drug effects , Organ Culture Techniques , Patch-Clamp Techniques , Potassium Channels/drug effects , Pregnancy , Rats
20.
Biophys J ; 70(6): 2640-51, 1996 Jun.
Article in English | MEDLINE | ID: mdl-8744301

ABSTRACT

Cloned large conductance Ca(2+)-activated K+ channels (BK or maxi-K+ channels) from Drosophila (dSlo) were expressed in Xenopus oocytes and studied in excised membrane patches with the patch-clamp technique. Both a natural variant and a mutant that eliminated a putative cyclic AMP-dependent protein kinase phosphorylation site exhibited large, slow fluctuations in open probability with time. These fluctuations, termed "wanderlust kinetics," occurred with a time course of tens of seconds to minutes and had kinetic properties inconsistent with simple gating models. Wanderlust kinetics was still observed in the presence of 5 mM caffeine or 50 nM thapsigargin, or when the Ca2+ buffering capacity of the solution was increased by the addition of 5 mM HEDTA, suggesting that the wanderlust kinetics did not arise from Ca2+ release from caffeine and thapsigargin sensitive internal stores in the excised patch. The slow changes in kinetics associated with wanderlust kinetics could be generated with a discrete-state Markov model with transitions among three or more kinetic modes with different levels of open probability. To average out the wanderlust kinetics, large amounts of data were analyzed and demonstrated up to a threefold difference in the [Ca2+]i required for an open probability of 0.5 among channels expressed from the same injected mRNA. These findings indicate that cloned dSlo channels in excised patches from Xenopus oocytes can exhibit large variability in gating properties, both within a single channel and among channels.


Subject(s)
Calcium/metabolism , Drosophila/metabolism , Potassium Channels, Calcium-Activated , Potassium Channels/metabolism , Animals , Biophysical Phenomena , Biophysics , Caffeine/pharmacology , Drosophila/genetics , Drosophila Proteins , Edetic Acid/analogs & derivatives , Edetic Acid/pharmacology , Electric Conductivity , Female , In Vitro Techniques , Ion Channel Gating , Kinetics , Large-Conductance Calcium-Activated Potassium Channels , Models, Biological , Oocytes/metabolism , Patch-Clamp Techniques , Potassium Channels/drug effects , Potassium Channels/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thapsigargin/pharmacology , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...