Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 46(1): e4, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29059327

ABSTRACT

Deciphering the functions of long non-coding RNAs (lncRNAs) is facilitated by visualization of their subcellular localization using in situ hybridization (ISH) techniques. We evaluated four different ISH methods for detection of MALAT1 and CYTOR in cultured cells: a multiple probe detection approach with or without enzymatic signal amplification, a branched-DNA (bDNA) probe and an LNA-modified probe with enzymatic signal amplification. All four methods adequately stained MALAT1 in the nucleus in all of three cell lines investigated, HeLa, NHDF and T47D, and three of the methods detected the less expressed CYTOR. The sensitivity of the four ISH methods was evaluated by image analysis. In all three cell lines, the two methods involving enzymatic amplification gave the most intense MALAT1 signal, but the signal-to-background ratios were not different. CYTOR was best detected using the bDNA method. All four ISH methods showed significantly reduced MALAT1 signal in knock-out cells, and siRNA-induced knock-down of CYTOR resulted in significantly reduced CYTOR ISH signal, indicating good specificity of the probe designs and detection systems. Our data suggest that the ISH methods allow detection of both abundant and less abundantly expressed lncRNAs, although the latter required the use of the most specific and sensitive probe detection system.


Subject(s)
Cell Nucleus/genetics , Gene Expression Regulation , In Situ Hybridization, Fluorescence/methods , RNA, Long Noncoding/genetics , A549 Cells , Cell Line , Cell Line, Tumor , DNA Probes/genetics , Gene Amplification , HeLa Cells , Humans , MCF-7 Cells , Reproducibility of Results
2.
Nat Commun ; 7: 13875, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28004750

ABSTRACT

We currently have limited knowledge of the involvement of long non-coding RNAs (lncRNAs) in normal cellular processes and pathologies. Here, we identify and characterize SNHG5 as a stable cytoplasmic lncRNA with up-regulated expression in colorectal cancer. Depletion of SNHG5 induces cell cycle arrest and apoptosis in vitro and limits tumour outgrowth in vivo, whereas SNHG5 overexpression counteracts oxaliplatin-induced apoptosis. Using an unbiased approach, we identify 121 transcript sites interacting with SNHG5 in the cytoplasm. Importantly, knockdown of key SNHG5 target transcripts, including SPATS2, induces apoptosis and thus mimics the effect seen following SNHG5 depletion. Mechanistically, we suggest that SNHG5 stabilizes the target transcripts by blocking their degradation by STAU1. Accordingly, depletion of STAU1 rescues the apoptosis induced after SNHG5 knockdown. Hence, we characterize SNHG5 as a lncRNA promoting tumour cell survival in colorectal cancer and delineate a novel mechanism in which a cytoplasmic lncRNA functions through blocking the action of STAU1.


Subject(s)
Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cytoskeletal Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Apoptosis , Caco-2 Cells , Cell Line, Tumor , Cell Proliferation , Cell Survival , Colorectal Neoplasms/genetics , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/genetics , Gene Knockdown Techniques , HCT116 Cells , HT29 Cells , Humans , Proteins/antagonists & inhibitors , Proteins/genetics , Proteins/metabolism , RNA Stability , RNA, Long Noncoding/antagonists & inhibitors , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , Up-Regulation
3.
Nat Commun ; 6: 6967, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25908244

ABSTRACT

Oncogene-induced senescence (OIS) can occur in response to oncogenic insults and is considered an important tumour suppressor mechanism. Here we identify the lncRNA MIR31HG as upregulated in OIS and find that knockdown of MIR31HG promotes a strong p16(INK4A)-dependent senescence phenotype. Under normal conditions, MIR31HG is found in both nucleus and cytoplasm, but following B-RAF expression MIR31HG is located mainly in the cytoplasm. We show that MIR31HG interacts with both INK4A and MIR31HG genomic regions and with Polycomb group (PcG) proteins, and that MIR31HG is required for PcG-mediated repression of the INK4A locus. We further identify a functional enhancer, located between MIR31HG and INK4A, which becomes activated during OIS and interacts with the MIR31HG promoter. Data from melanoma patients show a negative correlation between MIR31HG and p16(INK4A) expression levels, suggesting a role for this transcript in cancer. Hence, our data provide a new lncRNA-mediated regulatory mechanism for the tumour suppressor p16(INK4A).


Subject(s)
Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Melanoma/metabolism , Proto-Oncogene Proteins B-raf/metabolism , RNA, Long Noncoding/metabolism , Animals , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HEK293 Cells , Humans , Mice , Oncogenes , Phenotype , Polycomb-Group Proteins/metabolism
4.
Int J Cancer ; 133(10): 2498-503, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23649733

ABSTRACT

Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) increase colon cancer risk. Antidiabetic drugs stabilizing incretin hormones, such as inhibitors of dipeptidyl peptidase-4 activity (DPP4i), may affect colon carcinogenesis; however, the data remain controversial. Therefore, the authors studied whether long-term administration of the DPP4i Sitagliptin (SITA) affects 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis. Male F344 rats fed a high-fat (HF) diet promoting colon carcinogenesis and IR, were induced with DMH (100 mg/kg × 2 times). One week later, the animals were allocated to two groups: one continuing with HF diet (controls; n = 8) and one receiving SITA (n = 8) mixed in the diet (260 ppm). Body weight, food consumption and glycemia were not affected by SITA. Fifteen weeks after DMH, the number of the precancerous lesions mucin-depleted foci (MDF) was significantly lower in rats treated with SITA [MDF/colon: 9.5 ± 0.9 and 6.4 ± 0.9 in controls (n = 8) and SITA groups (n = 8), respectively; means ± SE, p < 0.05]. Reactive oxygen species in the blood were also significantly lower in the SITA group [6.75 ± 0.69 and 5.63 ± 0.75 (H2 O2 in mM) in controls (n = 5) and SITA (n = 6), respectively; means ± SE, p < 0.05]. Rats treated with SITA had a lower DPP4 activity in the intestine but not in the plasma. Intestine growth morphometric parameters and colon proliferation, as proliferating cell nuclear antigen expression, were not affected by SITA. In conclusion, the results suggest a protective effect of DPP4i against colon carcinogenesis that could be exploited in chemoprevention trials.


Subject(s)
Carcinogenesis/drug effects , Colonic Neoplasms/prevention & control , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Pyrazines/pharmacology , Triazoles/pharmacology , 1,2-Dimethylhydrazine , Animals , Body Weight/drug effects , Carcinogenesis/metabolism , Colonic Neoplasms/blood , Colonic Neoplasms/chemically induced , Colonic Neoplasms/metabolism , Intestinal Mucosa/metabolism , Intestines/drug effects , Male , Mucins/metabolism , Random Allocation , Rats , Rats, Inbred F344 , Reactive Oxygen Species/blood , Sitagliptin Phosphate
SELECTION OF CITATIONS
SEARCH DETAIL
...