Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 18: 1390663, 2024.
Article in English | MEDLINE | ID: mdl-38910964

ABSTRACT

Insulin-like growth factor-I (IGF-I) plays a key role in the modulation of synaptic plasticity and is an essential factor in learning and memory processes. However, during aging, IGF-I levels are decreased, and the effect of this decrease in the induction of synaptic plasticity remains unknown. Here we show that the induction of N-methyl-D-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP) at layer 2/3 pyramidal neurons (PNs) of the mouse barrel cortex is favored or prevented by IGF-I (10 nM) or IGF-I (7 nM), respectively, when IGF-I is applied 1 h before the induction of Hebbian LTP. Analyzing the cellular basis of this bidirectional control of synaptic plasticity, we observed that while 10 nM IGF-I generates LTP (LTPIGF-I) of the post-synaptic potentials (PSPs) by inducing long-term depression (LTD) of the inhibitory post-synaptic currents (IPSCs), 7 nM IGF-I generates LTD of the PSPs (LTDIGF-I) by inducing LTD of the excitatory post-synaptic currents (EPSCs). This bidirectional effect of IGF-I is supported by the observation of IGF-IR immunoreactivity at both excitatory and inhibitory synapses. Therefore, IGF-I controls the induction of Hebbian NMDAR-dependent plasticity depending on its concentration, revealing novel cellular mechanisms of IGF-I on synaptic plasticity and in the learning and memory machinery of the brain.

2.
Cells ; 11(10)2022 05 14.
Article in English | MEDLINE | ID: mdl-35626678

ABSTRACT

Insulin-like growth factor-I (IGF-I) signaling plays a key role in learning and memory. IGF-I increases the spiking and induces synaptic plasticity in the mice barrel cortex (Noriega-Prieto et al., 2021), favoring the induction of the long-term potentiation (LTP) by Spike Timing-Dependent Protocols (STDP) (Noriega-Prieto et al., 2021). Here, we studied whether these IGF-I effects depend on endocannabinoids (eCBs) and nitric oxide (NO). We recorded both excitatory postsynaptic currents (EPSCs) and inhibitory postsynaptic currents (IPSCs) evoked by stimulation of the basal dendrites of layer II/III pyramidal neurons of the Barrel Cortex and analyzed the effect of IGF-I in the presence of a CB1R antagonist, AM251, and inhibitor of the NO synthesis, L-NAME, to prevent the eCBs and the NO-mediated signaling. Interestingly, L-NAME abolished any modulatory effect of the IGF-I-induced excitatory and inhibitory transmission changes, suggesting the essential role of NO. Surprisingly, the inhibition of CB1Rs did not only block the potentiation of EPSCs but reversed to a depression, highlighting the remarkable functions of the eCB system. In conclusion, eCBs and NO play a vital role in deciding the sign of the effects induced by IGF-I in the neocortex, suggesting a neuromodulatory interplay among IGF-I, NO, and eCBs.


Subject(s)
Endocannabinoids , Nitric Oxide , Animals , Endocannabinoids/pharmacology , Endocannabinoids/physiology , Insulin-Like Growth Factor I/pharmacology , Mice , NG-Nitroarginine Methyl Ester , Neuronal Plasticity/physiology
3.
J Neurosci ; 41(22): 4768-4781, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33911021

ABSTRACT

Insulin-like growth factor-I (IGF-I) signaling plays a key role in learning and memory processes. While the effects of IGF-I on neurons have been studied extensively, the involvement of astrocytes in IGF-I signaling and the consequences on synaptic plasticity and animal behavior remain unknown. We have found that IGF-I induces long-term potentiation (LTPIGFI) of the postsynaptic potentials that is caused by a long-term depression of inhibitory synaptic transmission in mice. We have demonstrated that this long-lasting decrease in the inhibitory synaptic transmission is evoked by astrocytic activation through its IGF-I receptors (IGF-IRs). We show that LTPIGFI not only increases the output of pyramidal neurons, but also favors the NMDAR-dependent LTP, resulting in the crucial information processing at the barrel cortex since specific deletion of IGF-IR in cortical astrocytes impairs the whisker discrimination task. Our work reveals a novel mechanism and functional consequences of IGF-I signaling on cortical inhibitory synaptic plasticity and animal behavior, revealing that astrocytes are key elements in these processes.SIGNIFICANCE STATEMENT Insulin-like growth factor-I (IGF-I) signaling plays key regulatory roles in multiple processes of brain physiology, such as learning and memory. Yet, the underlying mechanisms remain largely undefined. Here we demonstrate that astrocytes respond to IGF-I signaling, elevating their intracellular Ca2+ and stimulating the release of ATP/adenosine, which triggers the LTD of cortical inhibitory synapses, thus regulating the behavioral task performance related to cortical sensory information processing. Therefore, the present work represents a major conceptual advance in our knowledge of the cellular basis of IGF-I signaling in brain function, by including for the first time astrocytes as key mediators of IGF-I actions on synaptic plasticity, cortical sensory information discrimination and animal behavior.


Subject(s)
Adenosine/metabolism , Astrocytes/metabolism , Neuronal Plasticity/physiology , Receptor, IGF Type 1/metabolism , Somatosensory Cortex/physiology , Animals , Behavior, Animal/physiology , Down-Regulation , Learning/physiology , Long-Term Synaptic Depression/physiology , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Pyramidal Cells/physiology
4.
Neuroscience ; 418: 149-156, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31449986

ABSTRACT

Dendritic calcium (Ca2+) spikes play a key role in the genesis of long-term synaptic plasticity. Although synaptic plasticity in the infralimbic cortex is critical for the extinction of fear-conditioned memory, the role of Ca2+-spikes in the induction of synaptic plasticity at this cortex has not been explored in depth. Here we show that Ca2+-spikes in layer 5 pyramidal neurons (L5 PNs) of the rat infralimbic cortex are crucial in the induction of long-term depression of the excitatory postsynaptic currents (EPSCs). The lack of effect on the postsynaptic currents evoked by puffing glutamate and the changes in the variance of the EPSC amplitude that paralleled its inhibition suggest that this LTD of the EPSCs is mediated presynaptically. However, its induction requires cytosolic calcium elevations because it is prevented when the recorded L5 PN is loaded with BAPTA. Moreover, it depends on the synthesis of nitric oxide (NO) because it is absent on slices incubated with nitric oxidase synthase inhibitor L-NAME. Therefore, Ca2+-spikes can trigger LTD of the ESPCs through the NO dependent presynaptic form of synaptic plasticity, thus providing a novel form of inducing synaptic plasticity at L5 PNs of the rat infralimbic cortex.


Subject(s)
Long-Term Synaptic Depression/physiology , Neuronal Plasticity/physiology , Nitric Oxide/metabolism , Synapses/physiology , Animals , Calcium/metabolism , Dendrites/physiology , Electric Stimulation/methods , Excitatory Postsynaptic Potentials/physiology , Pyramidal Cells/drug effects , Rats, Sprague-Dawley
5.
Cereb Cortex ; 28(5): 1568-1581, 2018 05 01.
Article in English | MEDLINE | ID: mdl-28334325

ABSTRACT

Brain-derived neurotrophic factor (BDNF) plays a critical role in modulating plasticity in sensory cortices. Indeed, a BDNF-dependent long-term potentiation (LTP) at distal basal excitatory synapses of Layer 5 pyramidal neurons (L5PNs) has been demonstrated in disinhibited rat barrel cortex slices. Although it is well established that this LTP requires the pairing of excitatory postsynaptic potentials (PSPs) with Ca2+ spikes, its induction when synaptic inhibition is working remains unexplored. Here we show that low-frequency stimulation at basal dendrites of L5PNs is able to trigger a PSP followed by an action potential (AP) and a slow depolarization (termed PSP-Ca2+ response) in thalamocortical slices without blocking synaptic inhibition. We demonstrate that AP barrage-mediated release of endocannabinoids (eCBs) from the recorded L5PNs induces PSP-Ca2+ response facilitation and BDNF-dependent LTP. Indeed, this LTP requires the type 1 cannabinoid receptors activation, is prevented by postsynaptic intracellular 1,2-bis(2-aminophenoxy) ethane-N,N,N,N'-tetraacetic acid (BAPTA) or the anandamide membrane transporter inhibitor AM404, and only occurs in L5PNs neurons showing depolarization-induced suppression of inhibition. Additionally, electrical stimulation at the posteromedial thalamic nucleus induced similar response and LTP. These results reveal a novel form of eCB-dependent LTP at L5PNs that could be relevant in the processing of sensory information in the barrel cortex.


Subject(s)
Cerebral Cortex/cytology , Endocannabinoids/metabolism , Long-Term Potentiation/physiology , Pyramidal Cells/physiology , Synaptic Transmission/physiology , 2-Amino-5-phosphonovalerate/pharmacology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Animals , Animals, Newborn , Arachidonic Acids/pharmacology , Benzoxazines/pharmacology , Calcium Channel Blockers/pharmacology , Cerebral Cortex/physiology , Excitatory Amino Acid Antagonists/pharmacology , Extracellular Fluid/drug effects , Extracellular Fluid/metabolism , Long-Term Potentiation/drug effects , Morpholines/pharmacology , Naphthalenes/pharmacology , Neural Pathways/drug effects , Neural Pathways/physiology , Peptides, Cyclic/pharmacology , Pyramidal Cells/drug effects , Rats , Rats, Sprague-Dawley , Receptor, trkB/antagonists & inhibitors , Synaptic Transmission/drug effects , Thalamus/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...