Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
2.
Hum Gene Ther ; 34(17-18): 853-869, 2023 09.
Article in English | MEDLINE | ID: mdl-37694593

ABSTRACT

Advanced gene transfer technologies and profound immunological insights have enabled substantial increases in the efficacy of anticancer adoptive cellular therapy (ACT). In recent years, the U.S. Food and Drug Administration and European Medicines Agency have approved six engineered T cell therapeutic products, all chimeric antigen receptor-engineered T cells directed against B cell malignancies. Despite encouraging clinical results, engineered T cell therapy is still constrained by challenges, which could be addressed by genome editing. As RNA-guided Clustered Regularly Interspaced Short Palindromic Repeats technology passes its 10-year anniversary, we review emerging applications of genome editing approaches designed to (1) overcome resistance to therapy, including cancer immune evasion mechanisms; (2) avoid unwanted immune reactions related to allogeneic T cell products; (3) increase fitness, expansion capacity, persistence, and potency of engineered T cells, while preserving their safety profile; and (4) improve the ability of therapeutic cells to resist immunosuppressive signals active in the tumor microenvironment. Overall, these innovative approaches should widen the safe and effective use of ACT to larger number of patients affected by cancer.


Subject(s)
Gene Editing , Neoplasms , United States , Humans , T-Lymphocytes , Immunotherapy , Anniversaries and Special Events , B-Lymphocytes , Neoplasms/genetics , Neoplasms/therapy
3.
Mol Ther Oncolytics ; 30: 56-71, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37583386

ABSTRACT

Discrimination between hematopoietic stem cells and leukemic stem cells remains a major challenge for acute myeloid leukemia immunotherapy. CAR T cells specific for the CD117 antigen can deplete malignant and healthy hematopoietic stem cells before consolidation with allogeneic hematopoietic stem cell transplantation in absence of cytotoxic conditioning. Here we exploit non-viral technology to achieve early termination of CAR T cell activity to prevent incoming graft rejection. Transient expression of an anti-CD117 CAR by mRNA conferred T cells the ability to eliminate CD117+ targets in vitro and in vivo. As an alternative approach, we used a Sleeping Beauty transposon vector for the generation of CAR T cells incorporating an inducible Caspase 9 safety switch. Stable CAR expression was associated with high proportion of T memory stem cells, low levels of exhaustion markers, and potent cellular cytotoxicity. Anti-CD117 CAR T cells mediated depletion of leukemic cells and healthy hematopoietic stem cells in NSG mice reconstituted with human leukemia or CD34+ cord blood cells, respectively, and could be terminated in vivo. The use of a non-viral technology to control CAR T cell pharmacokinetic properties is attractive for a first-in-human study in patients with acute myeloid leukemia prior to hematopoietic stem cell transplantation.

4.
Front Immunol ; 13: 867013, 2022.
Article in English | MEDLINE | ID: mdl-35757746

ABSTRACT

Adoptive transfer of chimeric antigen receptor (CAR) T lymphocytes is a powerful technology that has revolutionized the way we conceive immunotherapy. The impressive clinical results of complete and prolonged response in refractory and relapsed diseases have shifted the landscape of treatment for hematological malignancies, particularly those of lymphoid origin, and opens up new possibilities for the treatment of solid neoplasms. However, the widening use of cell therapy is hampered by the accessibility to viral vectors that are commonly used for T cell transfection. In the era of messenger RNA (mRNA) vaccines and CRISPR/Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated) precise genome editing, novel and virus-free methods for T cell engineering are emerging as a more versatile, flexible, and sustainable alternative for next-generation CAR T cell manufacturing. Here, we discuss how the use of non-viral vectors can address some of the limitations of the viral methods of gene transfer and allow us to deliver genetic information in a stable, effective and straightforward manner. In particular, we address the main transposon systems such as Sleeping Beauty (SB) and piggyBac (PB), the utilization of mRNA, and innovative approaches of nanotechnology like Lipid-based and Polymer-based DNA nanocarriers and nanovectors. We also describe the most relevant preclinical data that have recently led to the use of non-viral gene therapy in emerging clinical trials, and the related safety and efficacy aspects. We will also provide practical considerations for future trials to enable successful and safe cell therapy with non-viral methods for CAR T cell generation.


Subject(s)
Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Gene Editing/methods , Immunotherapy, Adoptive/methods , RNA, Messenger , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes
5.
ACS Appl Nano Mater ; 5(4): 4731-4743, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35492439

ABSTRACT

In nature, chitin is organized in hierarchical structures composed of nanoscale building blocks that show outstanding mechanical and optical properties attractive for nanomaterial design. For applications that benefit from a maximized interface such as nanocomposites and Pickering emulsions, individualized chitin nanocrystals (ChNCs) are of interest. However, when extracted in water suspension, their individualization is affected by ChNC self-assembly, requiring a large amount of water (above 90%) for ChNC transport and stock, which limits their widespread use. To master their individualization upon drying and after regeneration, we herein report a waterborne topochemical one-pot acid hydrolysis/Fischer esterification to extract ChNCs from chitin and simultaneously decorate their surface with lactate or butyrate moieties. Controlled reaction conditions were designed to obtain nanocrystals of a comparable aspect ratio of about 30 and a degree of modification of about 30% of the ChNC surface, under the rationale to assess the only effect of the topochemistry on ChNC supramolecular organization. The rheological analysis coupled with polarized light imaging shows how the nematic structuring is hindered by both surface ester moieties. The increased viscosity and elasticity of the modified ChNC colloids indicate a gel-like phase, where typical ChNC clusters of liquid crystalline phases are disrupted. Pickering emulsions have been prepared from lyophilized nanocrystals as a proof of concept. Our results demonstrate that only the emulsions stabilized by the modified ChNCs have excellent stability over time, highlighting that their individualization can be regenerated from the dry state.

6.
J Clin Invest ; 130(11): 6021-6033, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32780725

ABSTRACT

BACKGROUNDChimeric antigen receptor (CAR) T cell immunotherapy has resulted in complete remission (CR) and durable response in highly refractory patients. However, logistical complexity and high costs of manufacturing autologous viral products limit CAR T cell availability.METHODSWe report the early results of a phase I/II trial in B cell acute lymphoblastic leukemia (B-ALL) patients relapsed after allogeneic hematopoietic stem cell transplantation (HSCT) using donor-derived CD19 CAR T cells generated with the Sleeping Beauty (SB) transposon and differentiated into cytokine-induced killer (CIK) cells.RESULTSThe cellular product was produced successfully for all patients from the donor peripheral blood (PB) and consisted mostly of CD3+ lymphocytes with 43% CAR expression. Four pediatric and 9 adult patients were infused with a single dose of CAR T cells. Toxicities reported were 2 grade I and 1 grade II cytokine-release syndrome (CRS) cases at the highest dose in the absence of graft-versus-host disease (GVHD), neurotoxicity, or dose-limiting toxicities. Six out of 7 patients receiving the highest doses achieved CR and CR with incomplete blood count recovery (CRi) at day 28. Five out of 6 patients in CR were also minimal residual disease negative (MRD-). Robust expansion was achieved in the majority of the patients. CAR T cells were measurable by transgene copy PCR up to 10 months. Integration site analysis showed a positive safety profile and highly polyclonal repertoire in vitro and at early time points after infusion.CONCLUSIONSB-engineered CAR T cells expand and persist in pediatric and adult B-ALL patients relapsed after HSCT. Antileukemic activity was achieved without severe toxicities.TRIAL REGISTRATIONClinicalTrials.gov NCT03389035.FUNDINGThis study was supported by grants from the Fondazione AIRC per la Ricerca sul Cancro (AIRC); Cancer Research UK (CRUK); the Fundación Científica de la Asociación Española Contra el Cáncer (FC AECC); Ministero Della Salute; Fondazione Regionale per la Ricerca Biomedica (FRRB).


Subject(s)
Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Adolescent , Adult , Allografts , Child , Child, Preschool , Female , Humans , Infant , Male , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology
7.
Colloids Surf B Biointerfaces ; 195: 111266, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32739771

ABSTRACT

The development of new therapeutic strategies against multidrug resistant Gram-negative bacteria is a major challenge for pharmaceutical research. In this respect, it is increasingly recognized that an efficient treatment for resistant bacterial infections should combine antimicrobial and anti-inflammatory effects. Here, we explore the multifunctional therapeutic potential of nanostructured self-assemblies from a cationic bolaamphiphile, which target bacterial lipopolysaccharides (LPSs) and associates with an anti-bacterial nucleic acid to form nanoplexes with therapeutic efficacy against Gram-negative bacteria. To understand the mechanistic details of these multifunctional antimicrobial-anti-inflammatory properties, we performed a fundamental study, comparing the interaction of these nanostructured therapeutics with synthetic biomimetic bacterial membranes and live bacterial cells. Combining a wide range of experimental techniques (Confocal Microscopy, Fluorescence Correlation Spectroscopy, Microfluidics, NMR, LPS binding assays), we demonstrate that the LPS targeting capacity of the bolaamphiphile self-assemblies, comparable to that exerted by Polymixin B, is a key feature of these nanoplexes and one that permits entry of therapeutic nucleic acids in Gram-negative bacteria. These findings enable a new approach to the design of efficient multifunctional therapeutics with combined antimicrobial and anti-inflammatory effects and have therefore the potential to broadly impact fundamental and applied research on self-assembled nano-sized antibacterials for antibiotic resistant infections.


Subject(s)
Anti-Infective Agents , Lipopolysaccharides , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , DNA , Gram-Negative Bacteria , Microbial Sensitivity Tests
8.
Mol Ther ; 28(9): 1974-1986, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32526203

ABSTRACT

The successful implementation of chimeric antigen receptor (CAR)-T cell therapy in the clinical context of B cell malignancies has paved the way for further development in the more critical setting of acute myeloid leukemia (AML). Among the potentially targetable AML antigens, CD33 is insofar one of the main validated molecules. Here, we describe the feasibility of engineering cytokine-induced killer (CIK) cells with a CD33.CAR by using the latest optimized version of the non-viral Sleeping Beauty (SB) transposon system "SB100X-pT4." This offers the advantage of improving CAR expression on CIK cells, while reducing the amount of DNA transposase as compared to the previously employed "SB11-pT" version. SB-modified CD33.CAR-CIK cells exhibited significant antileukemic activity in vitro and in vivo in patient-derived AML xenograft models, reducing AML development when administered as an "early treatment" and delaying AML progression in mice with established disease. Notably, by exploiting an already optimized xenograft chemotherapy model that mimics human induction therapy in mice, we demonstrated for the first time that CD33.CAR-CIK cells are also effective toward chemotherapy resistant/residual AML cells, further supporting its future clinical development and implementation within the current standard regimens.


Subject(s)
Cell Engineering/methods , Cell Transplantation/methods , Cytokine-Induced Killer Cells/immunology , Drug Resistance, Neoplasm , Genetic Therapy/methods , Heterografts , Immunotherapy, Adoptive/methods , Leukemia, Experimental/therapy , Leukemia, Myeloid, Acute/therapy , Receptors, Chimeric Antigen/genetics , Sialic Acid Binding Ig-like Lectin 3/genetics , Animals , Feasibility Studies , Gene Transfer Techniques , Humans , Mice , Mice, Inbred NOD , Mice, SCID , THP-1 Cells , Transposases/genetics , Transposases/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays
9.
Leukemia ; 34(10): 2688-2703, 2020 10.
Article in English | MEDLINE | ID: mdl-32358567

ABSTRACT

Acute myeloid leukemia (AML) initiating and sustaining cells maintain high cell-surface similarity with their cells-of-origin, i.e., hematopoietic stem and progenitor cells (HSPCs), and identification of truly distinguishing leukemia-private antigens has remained elusive to date. To nonetheless utilize surface antigen-directed immunotherapy in AML, we here propose targeting both, healthy and malignant human HSPC, by chimeric antigen receptor (CAR) T-cells with specificity against CD117, the cognate receptor for stem cell factor. This approach should spare most mature hematopoietic cells and would require CAR T termination followed by subsequent transplantation of healthy HSPCs to rescue hematopoiesis. We successfully generated anti-CD117 CAR T-cells from healthy donors and AML patients. Anti-CD117 CAR T-cells efficiently targeted healthy and leukemic CD117-positive cells in vitro. In mice xenografted with healthy human hematopoiesis, they eliminated CD117-expressing, but not CD117-negative human cells. Importantly, in mice xenografted with primary human CD117-positive AML, they eradicated disease in a therapeutic setting. Administration of ATG in combination with rituximab, which binds to the co-expressed CAR T-cell transduction/selection marker RQR8, led to CAR T-cell depletion. Thus, we here provide the first proof of concept for the generation and preclinical efficacy of CAR T-cells directed against CD117-expressing human hematopoietic cells.


Subject(s)
Immunotherapy, Adoptive , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Biomarkers , Biopsy , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Line, Tumor , Disease Models, Animal , Gene Expression , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/immunology , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/therapy , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Humans , Immunophenotyping , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Lymphocyte Depletion , Mice , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Treatment Outcome , Xenograft Model Antitumor Assays
10.
Cells ; 9(6)2020 05 27.
Article in English | MEDLINE | ID: mdl-32471151

ABSTRACT

Chimeric Antigen Receptor (CAR) T-cell therapy has become a new therapeutic reality for refractory and relapsed leukemia patients and is also emerging as a potential therapeutic option in solid tumors. Viral vector-based CAR T-cells initially drove these successful efforts; however, high costs and cumbersome manufacturing processes have limited the widespread clinical implementation of CAR T-cell therapy. Here we will discuss the state of the art of the transposon-based gene transfer and its application in CAR T immunotherapy, specifically focusing on the Sleeping Beauty (SB) transposon system, as a valid cost-effective and safe option as compared to the viral vector-based systems. A general overview of SB transposon system applications will be provided, with an update of major developments, current clinical trials achievements and future perspectives exploiting SB for CAR T-cell engineering. After the first clinical successes achieved in the context of B-cell neoplasms, we are now facing a new era and it is paramount to advance gene transfer technology to fully exploit the potential of CAR T-cells towards next-generation immunotherapy.


Subject(s)
DNA Transposable Elements/genetics , Leukemia/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Acute Disease , Clinical Trials as Topic , Humans , Leukemia/genetics
11.
Biomacromolecules ; 21(5): 1892-1901, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32078304

ABSTRACT

Poly[(3-hydroxybutyrate)-ran-(3-hydroxyvalerate)] (PHBV) is a bacterial polyester with a strong potential as a substitute for oil-based thermoplastics due to its biodegradability and renewability. However, its inherent slow crystallization rate limits its thermomechanical properties and therefore its applications. In this work, surface-modified cellulose nanocrystals (CNCs) have been investigated as green and biosourced nucleating and reinforcing agent for PHBV matrix. Different ester moieties from the CNCs were thereby produced through a green one-pot hydrolysis/Fisher esterification. Beyond the improved dispersion, the CNCs surface esterification affected the thermal and thermomechanical properties of PHBV. The results demonstrate that butyrate-modified CNCs, mimicking the PHBV chemical structure, brought a considerable improvement toward the CNCs/matrix interface, leading to an enhancement of the PHBV thermomechanical properties via a more efficient stress transfer, especially above its glass transition.


Subject(s)
Cellulose , Nanoparticles , Hydroxybutyrates , Interphase , Valerates
12.
Hum Gene Ther ; 29(5): 602-613, 2018 05.
Article in English | MEDLINE | ID: mdl-29641322

ABSTRACT

Infusion of patient-derived CD19-specific chimeric antigen receptor (CAR) T cells engineered by viral vectors achieved complete remission and durable response in relapsed and refractory (r/r) B-lineage neoplasms. Here, we expand on those findings by providing a preclinical evaluation of allogeneic non-viral cytokine-induced killer (CIK) cells transfected with the Sleeping Beauty (SB) transposon CD19CAR (CARCIK-CD19). Specifically, thanks to a large-scale 18-day manufacturing process, it was possible to achieve stable CD19CAR expression (62.425 ± 6.399%) and efficient T-cell expansion (23.36 ± 3.00-fold). Frozen/thawed CARCIK-CD19 remained fully functional both in vitro and in an established patient-derived xenograft (PDX) of MLL-ENL rearranged acute lymphoblastic leukemia (ALL). CARCIK-CD19 showed a dose-dependent antitumor response and prolonged persistence in a PDX, bearing the feature of a Philadelphia-like ALL with PAX5/AUTS2 translocation, and in a survival model of lymphoma, achieving complete eradication of disseminated tumors. Finally, the infusion of CARCIK-CD19 proved to be safe and well tolerated in a biodistribution and toxicity model. The infused cells persisted in the hematopoietic and post-injection perfused organs until the end of the study and consisted of CD8+, CD56+, and CAR+ T cells. Overall, these findings provide important implications for non-viral technology and the proof-of-concept that donor-derived CARCIK-CD19 are indeed effective against relapsed ALL, a possibility that will be tested in Phase I/II clinical trials after allogeneic hematopoietic stem-cell transplantation.


Subject(s)
Cytokine-Induced Killer Cells/immunology , Immunotherapy, Adoptive , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Antigen, T-Cell/therapeutic use , Animals , Antigens, CD19/genetics , Antigens, CD19/immunology , Antigens, CD19/therapeutic use , Gene Expression Regulation, Neoplastic/genetics , Genetic Vectors/genetics , Genetic Vectors/therapeutic use , Humans , Mice , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Transfection , Xenograft Model Antitumor Assays
15.
J Autoimmun ; 85: 141-152, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28843422

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Nowadays the survival rate is around 85%. Nevertheless, an urgent clinical need is still represented by primary refractory and relapsed patients who do not significantly benefit from standard approaches, including chemo-radiotherapy and hematopoietic stem cell transplantation (HSCT). For this reason, immunotherapy has so far represented a challenging novel treatment opportunity, including, as the most validated therapeutic options, cancer vaccines, donor-lymphocyte infusions and tumor-specific immune effector cells. More recently, unexpected positive clinical results in ALL have been achieved by application of gene-engineered chimeric antigen expressing (CAR) T cells. Several CAR designs across different trials have generated similar response rates, with Complete Response (CR) of 60-90% at 1 month and an Event-Free Survival (EFS) of 70% at 6 months. Relevant challenges anyway remain to be addressed, such as amelioration of technical, cost and feasibility aspects of cell and gene manipulation and the necessity to face the occurrence of relapse mechanisms. This review describes the state of the art of ALL immunotherapies, the novelties in terms of gene manipulation approaches and the problems emerged from early clinical studies. We describe and discuss the process of clinical translation, including the design of a cell manufacturing protocol, vector production and regulatory issues. Multiple antigen targeting and combination of CAR T cells with molecular targeted drugs have also been evaluated as latest strategies to prevail over immune-evasion.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Animals , Disease-Free Survival , Humans , Immunotherapy/methods
16.
Mol Ther ; 25(8): 1933-1945, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28479045

ABSTRACT

Chimeric antigen receptor (CAR)-redirected T lymphocytes are a promising immunotherapeutic approach and object of pre-clinical evaluation for the treatment of acute myeloid leukemia (AML). We developed a CAR against CD123, overexpressed on AML blasts and leukemic stem cells. However, potential recognition of low CD123-positive healthy tissues, through the on-target, off-tumor effect, limits safe clinical employment of CAR-redirected T cells. Therefore, we evaluated the effect of context-dependent variables capable of modulating CAR T cell functional profiles, such as CAR binding affinity, CAR expression, and target antigen density. Computational structural biology tools allowed for the design of rational mutations in the anti-CD123 CAR antigen binding domain that altered CAR expression and CAR binding affinity without affecting the overall CAR design. We defined both lytic and activation antigen thresholds, with early cytotoxic activity unaffected by either CAR expression or CAR affinity tuning but later effector functions impaired by low CAR expression. Moreover, the anti-CD123 CAR safety profile was confirmed by lowering CAR binding affinity, corroborating CD123 is a good therapeutic target antigen. Overall, full dissection of these variables offers suitable anti-CD123 CAR design optimization for the treatment of AML.


Subject(s)
Interleukin-3 Receptor alpha Subunit/chemistry , Interleukin-3 Receptor alpha Subunit/immunology , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/metabolism , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , Recombinant Fusion Proteins , Binding Sites , Cytotoxicity, Immunologic , Gene Expression , Humans , Immunomodulation , Immunotherapy, Adoptive , Interleukin-3 Receptor alpha Subunit/antagonists & inhibitors , Interleukin-3 Receptor alpha Subunit/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Models, Molecular , Molecular Conformation , Protein Binding , Receptors, Antigen, T-Cell/genetics , Structure-Activity Relationship , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
17.
Oncotarget ; 7(32): 51581-51597, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27323395

ABSTRACT

Chimeric antigen receptor (CAR)-modified T-cell adoptive immunotherapy is a remarkable therapeutic option proven effective in the treatment of hematological malignancies. In order to optimize cell manufacturing, we sought to develop a novel clinical-grade protocol to obtain CAR-modified cytokine-induced killer cells (CIKs) using the Sleeping Beauty (SB) transposon system. Administration of irradiated PBMCs overcame cell death of stimulating cells induced by non-viral transfection, enabling robust gene transfer together with efficient T-cell expansion. Upon single stimulation, we reached an average of 60% expression of CD123- and CD19- specific 3rd generation CARs (CD28/OX40/TCRzeta). Furthermore, modified cells displayed persistence of cell subsets with memory phenotype, specific and effective lytic activity against leukemic cell lines and primary blasts, cytokine secretion, and proliferation. Adoptive transfer of CD123.CAR or CD19.CAR lymphocytes led to a significant anti-tumor response against acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) disseminated diseases in NSG mice. Notably, we found no evidence of integration enrichment near cancer genes and transposase expression at the end of the differentiation. Taken all together, our findings describe a novel donor-derived non-viral CAR approach that may widen the repertoire of available methods for T cell-based immunotherapy.


Subject(s)
Genetic Therapy/methods , Immunotherapy, Adoptive/methods , Leukemia/pathology , Leukemia/therapy , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/transplantation , Transposases/genetics , Acute Disease , Adolescent , Animals , Antigens, CD19/genetics , Antigens, CD19/metabolism , Cell Line, Tumor , Child , Child, Preschool , Combined Modality Therapy , Female , Humans , Infant , Interleukin-3 Receptor alpha Subunit/genetics , Interleukin-3 Receptor alpha Subunit/metabolism , Leukemia/immunology , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/metabolism , Transposases/metabolism , Xenograft Model Antitumor Assays
18.
Curr Opin Hematol ; 22(6): 497-502, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26390165

ABSTRACT

PURPOSE OF REVIEW: Allogeneic hematopoietic stem cell transplantation (HSCT) is still partially ineffective in curing high-risk hematological malignancies, with estimates of relapse rates ranging from 40 to 50%. The purpose of this review is to discuss the emerging therapeutic options for patients with relapsed disease following HSCT based on adoptive immunotherapy using donor-derived T cells genetically engineered to express CD19-specific chimeric antigen receptors (CARs). RECENT FINDINGS: Adoptive cell therapy (ACT) with CAR-modified T cells represents an attractive therapeutic option for further enhancing the graft-versus-leukemia effect. However, CAR-modified T cells are often obtained using apheresis products collected from the patient's own blood, a procedure that has hindered the application of CAR-based therapies into the clinic. Alternative approaches rely on CAR T cells derived from donors rather than the patient's own blood. Therefore, it appears that overcoming the practical limitation of allogeneic T cell-induced graft versus-host-disease is a key to providing access to CAR immunotherapy to all eligible patients. SUMMARY: Donor-derived CD19-CAR T cells may advance the field of CAR immunotherapy by controlling relapse in leukemic patients and improving the range of applications of ACT protocols.


Subject(s)
Antigens, CD19/immunology , Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation , Immunotherapy , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Tissue Donors , Graft vs Host Disease/immunology , Graft vs Leukemia Effect/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Transplantation, Homologous
19.
Immunol Lett ; 155(1-2): 43-6, 2013.
Article in English | MEDLINE | ID: mdl-24076117

ABSTRACT

In the context of acute myeloid leukemia (AML) treatment, the interface between chemotherapy and immunotherapy is at present getting closer as never before. Scientific research is oriented in overcoming the main limits of actual chemotherapeutic regimens against AML, which still accounts for a considerable number of relapsed or resistant forms. A lot of investments have been done in the use of monoclonal antibodies (mAbs) and recently gene-modified immune cells have been considered as an alternative approach whenever chemotherapy fails to eradicate the disease. In this sense, AML is a potential suitable target for immunotherapeutic approaches, due to overexpression of several tumor antigens. Here we describe the state of the art of mAbs and cellular therapies employing engineered immune effectors, developed against specific AML antigens, in a window embracing preclinical research and translational studies to the clinical setting.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Cancer Vaccines , Immunotherapy/methods , Leukemia, Myeloid, Acute/therapy , Animals , Antibodies, Monoclonal/genetics , Genetic Therapy , Humans , Immunotherapy/trends , Leukemia, Myeloid, Acute/immunology , Risk Assessment
20.
Front Oncol ; 3: 106, 2013.
Article in English | MEDLINE | ID: mdl-23641364

ABSTRACT

Despite the survival of pediatric patients affected by hematological malignancies being improved in the last 20 years by chemotherapy and hematopoietic stem cell transplantation, a significant amount of patients still relapses. Treatment intensification is limited by toxic side effects and is constrained by the plateau of efficacy, while the pipeline of new chemotherapeutic drugs is running short. Therefore, novel therapeutic strategies are essential and researchers around the world are testing in clinical trials immune and gene-therapy approaches as second-line treatments. The aim of this review is to give a glance at these novel promising strategies of advanced medicine in the field of pediatric leukemias. Results from clinical protocols using new targeted "smart" drugs, immunotherapy, and gene therapy are summarized, and important considerations regarding the combination of these novel approaches with standard treatments to promote safe and long-term cure are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...