ABSTRACT
Although non-innervated, the placenta contains both cholinesterases (ChEs), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE). These enzymes are well-known for their multiple molecular forms. In a first approach, we used recognized specific inhibitors, substrate preferences and non-denaturating gel electrophoresis in order to characterize the ChE profile of term placenta from uncomplicated pregnancy. Results strongly suggest that the predominant cholinesterasic form present was tetrameric BChE. It is well established that both ChEs are targets of cholinesterase-inhibiting organophosphates (OP), one of the most important classes of chemicals actively applied to the environment. However, we have previously reported increased ChEs activity in placenta of rural residents exposed to OP. In the present work, we have studied: 1) whether this finding was reproducible and, 2) whether AChE or BChE up regulation is behind the increase of placental ChE activity. The population studied included forty healthy women who live in an agricultural area. Samples were collected during both the OP pulverization period (PP) and the recess period (RP). The placental ChEs activity increased in PP, evidencing reproducibility of previous results. The analysis of non-denaturating gels revealed that increased activity of total ChE activity in placenta from women exposed to OP may be attributable to tetrameric BChE up-regulation.
ABSTRACT
In utero exposure is the first point of contact with environmental xenobiotics that may affect the maternal-placental-fetal balance. Considering that maternal pathophysiological changes affect intrauterine development, this pilot study was conducted to address how environmental exposure to organophosphate pesticides (OPs) during pregnancy may contribute to maternal endocrine disruption and disturbed hepatic function. A prospective study was carried out with pregnant women (n=97) living in a rural area of the Rio Negro province where OPs are intensively applied throughout 6 months of the year. Blood samples were obtained and biomarkers of OPs exposure (cholinesterases and ß-glucuronidase), cortisol (CT) and progesterone (PG) levels, as well as glycemia, were determined. Parameters of liver injury were assayed by measuring aspartate aminotransferase (AST) and alanine aminotransferase (ALT); liver function was assayed by measuring albumin. Biomonitoring carried out during the pre-spraying period (PreS) and spraying period (SP) showed that the population studied was exposed to OPs, proven by the fact that plasma (PCh) and erythrocyte cholinesterase (AChE) decreased very significantly (p<0.01) during SP. CT values increased very significantly (p<0.01) in the first trimester of pregnancy during SP with respect to PreS. Individual values above the upper limit of the CT and PG reference range were found both in PreS and SP. This finding could be associated with changes in hormone metabolism pathways produced by OPs exposure. During the second trimester of pregnancy there were increases in ALT values and the AST/ALT ratio in SP, suggesting subclinical hepatotoxicity. In SP, glycemia was unchanged while albuminemia increased. Although anthropometric newborn parameters and pregnancy alterations were within normal values for the general population, the increase in CT in the maternal compartment may lead to impaired newborn health later in life.
Subject(s)
Endocrine Disruptors/blood , Environmental Exposure/analysis , Organophosphorus Compounds/blood , Pesticides/blood , Adolescent , Adult , Alanine Transaminase/metabolism , Aspartate Aminotransferases/metabolism , Biomarkers/blood , Brazil , Cholinesterases/blood , Endocrine Disruptors/toxicity , Endocrine System/drug effects , Environmental Exposure/statistics & numerical data , Female , Glucuronidase/metabolism , Humans , Hydrocortisone/blood , Liver/drug effects , Organophosphorus Compounds/toxicity , Pesticides/toxicity , Pilot Projects , Pregnancy , Pregnant Women , Progesterone/blood , Prospective Studies , Young AdultABSTRACT
Pre- and perinatal exposure to pesticides is deleterious on foetal and neonatal development, but information regarding possible effects on environmental low-dose exposure to pesticides is scarce. Most epidemiological studies of the health effect of pesticides have been based on self-reported information. However, detailed information on past pesticide use is difficult to reconstruct. This is a current study conducted among pregnant mothers attending a delivery care and perinatal programme at a public hospital. The study investigates biomarkers of early effects in placentas from women living in an area with an intensive use of pesticides in the northern part of Patagonia, province of Río Negro, Argentina, and it assesses the consistency of the information provided by self-reports. The study confirms that placental acetylcholinesterase and catalase activities are significantly associated with periods of organophosphorus pesticides application, while glutathione S-transferase is not affected. We found a positive correlation between environmental exposure to organophosphorus pesticides and carbamate insecticides and newborn head circumference. The findings provide a further indication of a link between placenta acetylcholinesterase and catalase activity and prenatal exposure to pesticides in population studies. Both placenta enzymes may be used as biomarkers in health surveillance programmes for early diagnosis of exposure related alterations produced by organophosphorus pesticides and carbamate pesticides.