Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673972

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a complex disorder whose prevalence is rapidly growing in South America. The disturbances in the microbiota-gut-liver axis impact the liver damaging processes toward fibrosis. Gut microbiota status is shaped by dietary and lifestyle factors, depending on geographic location. We aimed to identify microbial signatures in a group of Chilean MASLD patients. Forty subjects were recruited, including healthy controls (HCs), overweight/obese subjects (Ow/Ob), patients with MASLD without fibrosis (MASLD/F-), and MASLD with fibrosis (MASLD/F+). Both MASLD and fibrosis were detected through elastography and/or biopsy, and fecal microbiota were analyzed through deep sequencing. Despite no differences in α- and ß-diversity among all groups, a higher abundance of Bilophila and a lower presence of Defluviitaleaceae, Lachnospiraceae ND3007, and Coprobacter was found in MASLD/F- and MASLD/F+, compared to HC. Ruminococcaceae UCG-013 and Sellimonas were more abundant in MASLD/F+ than in Ow/Ob; both significantly differed between MASLD/F- and MASLD/F+, compared to HC. Significant positive correlations were observed between liver stiffness and Bifidobacterium, Prevotella, Sarcina, and Acidaminococcus abundance. Our results show that MASLD is associated with changes in bacterial taxa that are known to be involved in bile acid metabolism and SCFA production, with some of them being more specifically linked to fibrosis.


Subject(s)
Gastrointestinal Microbiome , Humans , Male , Female , Middle Aged , Adult , Liver Cirrhosis/microbiology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Feces/microbiology , Liver/metabolism , Liver/pathology , Fatty Liver/microbiology , Fatty Liver/metabolism , Fatty Liver/pathology , Disease Progression , Obesity/microbiology , Obesity/complications , Obesity/metabolism , Chile , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/metabolism , Aged
2.
Front Med (Lausanne) ; 10: 1258395, 2023.
Article in English | MEDLINE | ID: mdl-37964883

ABSTRACT

Background and aims: Latin American populations remain underrepresented in genetic studies of inflammatory bowel diseases (IBDs). Most genetic association studies of IBD rely on Caucasian, African, and Asian individuals. These associations have yet to be evaluated in detail in the Andean region of South America. We explored the contribution of IBD-reported genetic risk variants to a Chilean cohort and the ancestry contribution to IBD in this cohort. Methods: A total of 192 Chilean IBD patients were genotyped using Illumina's Global Screening Array. Genotype data were combined with similar information from 3,147 Chilean controls. The proportions of Aymara, African, European, and Mapuche ancestries were estimated using the software ADMIXTURE. We calculated the odds ratios (ORs) and 95% confidence intervals (CIs) for gender, age, and ancestry proportions. We also explored associations with previously reported IBD-risk variants independently and in conjunction with genetic ancestry. Results: The first and third quartiles of the proportion of Mapuche ancestry in IBD patients were 24.7 and 34.2%, respectively, and the corresponding OR was 2.30 (95%CI 1.52-3.48) for the lowest vs. the highest group. Only one variant (rs7210086) of the 180 reported IBD-risk SNPs was associated with IBD risk in the Chilean cohort (adjusted P = 0.01). This variant is related to myeloid cells. Conclusion: The type and proportion of Native American ancestry in Chileans seem to be associated with IBD risk. Variants associated with IBD risk in this Andean region were related to myeloid cells and the innate immune response.

3.
Int J Mol Sci ; 24(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37834314

ABSTRACT

Lactose intolerance (LI) and vitamin D deficiency (VDD) have been linked to inflammatory bowel disease (IBD). We conducted an observational study in 192 Chilean IBD patients to investigate the prevalence of a specific gene variant (LCT-13910 CC genotype) associated with LI and the prevalence of VDD/Vitamin D Receptor (VDR) gene variants. Blood samples were analyzed using Illumina's Infinium Global Screening Array. The LCT-13910 CC genotype was found in 61% of IBD patients, similar to Chilean Hispanic controls and lower than Chilean Amerindian controls. The frequency of the LCT-13910-C allele in Chilean IBD patients (0.79) was comparable to the general population and higher than Europeans (0.49). Regarding VDR and VDD variants, in our study, the rs12785878-GG variant was associated with an increased risk of IBD (OR = 2.64, CI = 1.61-4.32; p-value = 0.001). Sixty-one percent of the Chilean IBD cohort have a genetic predisposition to lactose malabsorption, and a significant proportion exhibit genetic variants associated with VDD/VDR. Screening for LI and VDD is crucial in this Latin American IBD population.


Subject(s)
Inflammatory Bowel Diseases , Lactose , Receptors, Calcitriol , Humans , Chile/epidemiology , Genetic Predisposition to Disease , Genotype , Inflammatory Bowel Diseases/epidemiology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/complications , Lactose/deficiency , Polymorphism, Single Nucleotide , Prevalence , Receptors, Calcitriol/genetics , Vitamin D , Vitamin D Deficiency/complications , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/genetics
4.
Foods ; 12(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36832775

ABSTRACT

Cereal ß-glucans are beneficial health ingredients that reduce cholesterolemia and postprandial glycaemia. However, their impact on digestive hormones and gut microbiota is not yet fully established. Two randomized, double-blind, controlled studies were conducted. In the first study, 14 subjects ingested a breakfast with or without ß-glucan from oats (5.2 g). Compared to the control, ß-glucan increased orocecal transit time (p = 0.028) and decreased mean appetite score (p = 0.014) and postprandial plasma ghrelin (p = 0.030), C-peptide (p = 0.001), insulin (p = 0.06), and glucose (p = 0.0006). ß-glucan increased plasma GIP (p = 0.035) and PP (p = 0.018) without affecting leptin, GLP-1, PYY, glucagon, amylin, or 7α-hydroxy-4-cholesten-3-one, a biomarker of bile acid synthesis. In the second study, 32 subjects were distributed into 2 groups to ingest daily foods with (3 g/day) or without ß-glucan for 3 weeks; stools were collected before/after treatment. No changes in fecal microbiota composition/diversity (deep sequencing) were detected with ß-glucans. These results indicate that acute intake of 5 g ß-glucan slows transit time and decreases hunger sensation and postprandial glycaemia without affecting bile-acid synthesis, these changes being associated with decreased plasma insulin, C-peptide, and ghrelin, and increased plasma GIP and PP. However, regular daily intake of 3 g ß-glucan is not sufficient to have an effect on fecal microbiota composition.

5.
Microorganisms ; 10(11)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36363684

ABSTRACT

Background: Atrophic rhinitis (AtR) is a chronic nasal condition with polygenic and polybacterial etiology. We investigated the clinical outcomes of honey therapy and the associated nasal microbiome in AtR. Methods: For eight weeks, a nonrandomized control trial using a nasal spray of 10% manuka honey and saline on the right and left sides of the nose was conducted on 19 primary AtR patients. A nasal endoscopy was performed and a mucosal biopsy were taken before and after the intervention. Five of the nineteen patients were selected for microbiome and GPR43 expression studies. Results: We used manuka honey to describe an effective prebiotic treatment for atrophic rhinitis. There were nine males and ten females with an average (±SD) age of 33.8 (±10.7) years. Endoscopic scores and clinical symptoms improved in honey-treated nasal cavities (p < 0.003). There was a significant decrease in inflammation, restoration of mucus glands, and increased expression of GPR43 in the nasal cavities with honey therapy. The nasal microbiome composition before and after treatment was documented. Particularly, short chain fatty acid (SCFA) producers were positively enriched after honey therapy and correlated with improved clinical outcomes like nasal crusting, congestion, and discharge. Conclusion: Our approach to treating AtR patients with manuka honey illustrated effective clinical outcomes such as (1) decreased fetid smell, (2) thickening of the mucosa, (3) decreased inflammation with healed mucosal ulcers, (4) increased concentration of the mucosal glands, (5) altered nasal microbiome, and (6) increased expression of SCFA receptors. These changes are consequent to resetting the nasal microbiome due to honey therapy.

6.
Thyroid ; 32(5): 486-495, 2022 05.
Article in English | MEDLINE | ID: mdl-35272499

ABSTRACT

Context: Congenital hypothyroidism due to thyroid dysgenesis (CHTD) is a predominantly sporadic and nonsyndromic (NS) condition of unknown etiology. NS-CHTD shows a 40-fold increase in relative risk among first-degree relatives (1 in 100 compared with a birth prevalence of 1 in 4000 in the general population), but a discordance rate between monozygotic (MZ) twins of 92%. This suggests a two-hit mechanism, combining a genetic predisposition (incomplete penetrance of inherited variants) with postzygotic events (accounting for MZ twin discordance). Objective: To evaluate whether whole-exome sequencing (WES) allows to identify new predisposing genes in NS-CHTD. Methods: We performed a case-control study by comparing the whole exome of 36 nonconsanguineous cases of NS-CHTD (33 with lingual thyroid ectopy and 3 with athyreosis, based on technetium pertechnetate scintigraphy at diagnosis) with that of 301 unaffected controls to assess for enrichment in rare protein-altering variants. We performed an unbiased approach using a gene-based burden with a false discovery rate correction. Moreover, we identified all rare pathogenic and likely pathogenic variants, based on in silico prediction tools, in 27 genes previously associated with congenital hypothyroidism (CH) (thyroid dysgenesis [TD] and dyshormonogenesis). Results: After correction for multiple testing, no enrichment in rare protein-altering variants was observed in NS-CHTD. Pathogenic or likely pathogenic variants (21 variants in 12 CH genes) were identified in 42% of cases. Eight percent of cases had variants in more than one gene (oligogenic group); these were not more severely affected than monogenic cases. Moreover, cases with protein-altering variants in dyshormonogenesis-related genes were not more severely affected than those without. Conclusions: No new predisposing genes were identified following an unbiased analysis of WES data in a well-characterized NS-CHTD cohort. Nonetheless, the discovery rate of rare pathogenic or likely pathogenic variants was 42%. Eight percent of the cases harbored multiple variants in genes associated with TD or dyshormonogenesis, but these variants did not explain the variability of hypothyroidism observed in dysgenesis. WES did not identify a genetic cause in NS-CHTD cases, confirming the complex etiology of this disease. Additional studies in larger cohorts and/or novel discovery approaches are required.


Subject(s)
Congenital Hypothyroidism , Thyroid Dysgenesis , Case-Control Studies , Congenital Hypothyroidism/genetics , Congenital Hypothyroidism/pathology , Exome , Humans , Mutation , Thyroid Dysgenesis/complications , Thyroid Dysgenesis/genetics , Exome Sequencing
7.
Nutrients ; 13(4)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924396

ABSTRACT

BACKGROUND: Few preclinical studies have shown that Knee osteoarthritis (KOA) is linked to gut microbiome dysbiosis and chronic inflammation. This pilot study was designed to look at the gut microbiome composition in KOA patients and normal individuals with or without vitamin D deficiency (VDD, serum vitamin D <30 ng/mL). METHODS: This pilot study was conducted prospectively in 24 participants. The faecal samples of all the participants were taken for DNA extraction. The V3-V4 region of 16s rRNA was amplified, and the library was prepared and sequenced on the Illumina Miseq platform. RESULTS: The mean (±SD) age was 45.5 (±10.2) years with no defined comorbidities. Of 447 total Operational Taxonomic Units (OTUs), a differential abundance of 16 nominally significant OTUs between the groups was observed. Linear discriminate analysis (LEfSe) revealed a significant difference in bacteria among the study groups. Pseudobutyrivibrio and Odoribacter were specific for VDD, while Parabacteroides, Butyricimonas and Gordonibacter were abundant in the KOA_VDD group, and Peptococcus, Intestimonas, Delftia and Oribacterium were abundant in the KOA group. About 80% of bacterial species were common among different groups and hence labelled as core bacterial species. However, the core microbiome of KOA and VDD groups were not seen in the KOA_VDD group, suggesting that these bacterial groups were affected by the interaction of the KOA and VDD factors. CONCLUSION: Parabacteroides, Butyricimonas, Pseudobutyrivibrio, Odoribacter and Gordonibacter are the predominant bacteria in vitamin D deficient patients with or without KOA. Together these results indicate an association between the gut microbiome, vitamin D and knee osteoarthritis.


Subject(s)
Dysbiosis/complications , Gastrointestinal Microbiome/immunology , Osteoarthritis, Knee/immunology , Vitamin D Deficiency/immunology , Adult , DNA, Bacterial/isolation & purification , Dysbiosis/diagnosis , Dysbiosis/immunology , Dysbiosis/microbiology , Feces/microbiology , Gastrointestinal Microbiome/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Osteoarthritis, Knee/microbiology , Phylogeny , Pilot Projects , RNA, Ribosomal, 16S/genetics , Vitamin D/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/diagnosis , Vitamin D Deficiency/microbiology
8.
Sci Rep ; 11(1): 7762, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833357

ABSTRACT

Accumulating evidence suggests that various genetic and environmental factors contribute to the development of obesity. Among the latter, the gut microbiota has emerged as a critical player in the regulation of human metabolism and health and the development of non-communicable chronic diseases. Considering that no information on this matter is available in Argentina, our aim was to identify the microorganisms associated with obesity as well as their potential functionality. Using high throughput sequencing of 16SrRNA bacterial gene and diverse bioinformatics tools, we observed that the gut microbiota of obese and overweight individuals differs qualitatively and quantitatively from that from their lean counterparts. The comparison of the gut microbiota composition in obese subjects from Argentina, US and UK showed that the beta diversity significantly differs among the three countries, indicating that obesity-associated microbiota composition changes according to the geographical origin of the individuals. Moreover, four distinct microbiotypes were identified in obese individuals, whose prevalence and metabolic pathway signature differed according to the country, indicating that obesity associated dysbiosis would comprise several structures. In summary, identification of distinct taxonomic signatures associated with obesity might be a novel promising tool to stratify patients based on their microbiome configuration to design strategies for managing obesity.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Obesity/genetics , Adult , Argentina , Female , Humans , Male , Middle Aged , Obesity/microbiology , Obesity/physiopathology
9.
J Endocr Soc ; 5(3): bvaa183, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33506157

ABSTRACT

In 3 Somalian siblings with severe nongoitrous congenital hypothyroidism, exome sequencing identified a variant in TSHR predicted to be benign in isoform 3 but leading to an intronic mutation in isoform 1 (NM_00369:c.692 + 130C>A), which is the isoform expressed in the thyroid. This mutation creates a pseudoexon that results in a protein that, if transcribed, would lack the transmembrane domain, thereby hampering its expression at the cell surface. Our findings illustrate that the interpretation of exome analysis requires knowledge of the relevant isoform expression and of the biology of the disease. This is the first description of a deep intronic mutation creating a pseudoexon and inactivating the thyroid stimulating hormone (TSH) receptor.

10.
Front Microbiol ; 12: 787554, 2021.
Article in English | MEDLINE | ID: mdl-35087490

ABSTRACT

Here we report a new real-time PCR assay using SYBR Green which provides higher sensitivity for the specific detection of low levels of Pneumocystis jirovecii. To do so, two primer sets were designed, targeting the family of genes that code for the most abundant surface protein of Pneumocystis spp., namely the major surface glycoproteins (Msg), and the mitochondrial large subunit rRNA (mtLSUrRNA) multicopy gene, simultaneously detecting two regions. PCR methods are instrumental in detecting these low levels; however, current nested-PCR methods are time-consuming and complex. To validate our new real-time Msg-A/mtLSUrRNA PCR protocol, we compared it with nested-PCR based on the detection of Pneumocystis mitochondrial large subunit rRNA (mtLSUrRNA), one of the main targets used to detect this pathogen. All samples identified as positive by the nested-PCR method were found positive using our new real-time PCR protocol, which also detected P. jirovecii in three nasal aspirate samples that were negative for both rounds of nested-PCR. Furthermore, we read both rounds of the nested-PCR results for comparison and found that some samples with no PCR amplification, or with a feeble band in the first round, correlated with higher Ct values in our real-time Msg-A/mtLSUrRNA PCR. This finding demonstrates the ability of this new single-round protocol to detect low Pneumocystis levels. This new assay provides a valuable alternative for P. jirovecii detection, as it is both rapid and sensitive.

11.
Sci Rep ; 10(1): 17377, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060634

ABSTRACT

Human lungs harbor a scarce microbial community, requiring to develop methods to enhance the recovery of nucleic acids from bacteria and fungi, leading to a more efficient analysis of the lung tissue microbiota. Here we describe five extraction protocols including pre-treatment, bead-beating and/or Phenol:Chloroform:Isoamyl alcohol steps, applied to lung tissue samples from autopsied individuals. The resulting total DNA yield and quality, bacterial and fungal DNA amount and the microbial community structure were analyzed by qPCR and Illumina sequencing of bacterial 16S rRNA and fungal ITS genes. Bioinformatic modeling revealed that a large part of microbiome from lung tissue is composed of microbial contaminants, although our controls clustered separately from biological samples. After removal of contaminant sequences, the effects of extraction protocols on the microbiota were assessed. The major differences among samples could be attributed to inter-individual variations rather than DNA extraction protocols. However, inclusion of the bead-beater and Phenol:Chloroform:Isoamyl alcohol steps resulted in changes in the relative abundance of some bacterial/fungal taxa. Furthermore, inclusion of a pre-treatment step increased microbial DNA concentration but not diversity and it may contribute to eliminate DNA fragments from dead microorganisms in lung tissue samples, making the microbial profile closer to the actual one.


Subject(s)
Bacteria/isolation & purification , DNA, Bacterial/isolation & purification , DNA, Fungal/isolation & purification , Fungi/isolation & purification , Lung/microbiology , Bacteria/classification , Bacteria/genetics , Fungi/classification , Fungi/genetics , Humans , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , Species Specificity
12.
Front Nutr ; 7: 163, 2020.
Article in English | MEDLINE | ID: mdl-33072794

ABSTRACT

Macroalgae stand out for their high content of dietary fiber (30-75%) that include soluble, sulfated (fucoidan, agaran, carrageenan, and ulvan) and non-sulfated (laminaran and alginate) polysaccharides. Many studies indicate that these compounds exert varied biological activities and health-promoting effects and for this reason, there is a growing interest for using them in food products. The aim of this review was to critically evaluate prebiotic properties of algal polysaccharides, i.e., their ability to exert biological activities by modulating the composition and/or diversity of gut microbiota (GM). Pre-clinical studies show that the non-sulfated alginate and laminaran are well-fermented by GM, promoting the formation of short chain fatty acids (SCFAs) including butyrate, and preventing that of harmful putrefactive compounds (NH3, phenol, p-cresol, indole and H2S). Alginate increases Bacteroides, Bifidobacterium, and Lactobacillus species while laminaran mostly stimulates Bacteroides sp. Results with sulfated polysaccharides are more questionable. Agarans are poorly fermentable but agarose-oligosaccharides exhibit an interesting prebiotic potential, increasing butyrate-producing bacteria and SCFAs. Though carrageenan-oligosaccharides are also fermented, their use is currently limited due to safety concerns. Regarding fucoidan, only one study reports SCFAs production, suggesting that it is poorly fermented. Its effect on GM does not indicate a clear pattern, making difficult to conclude whether it is beneficial or not. Notably, fucoidan impact on H2S production has not been evaluated, though some studies report it increases sulfate-reducing bacteria. Ulvan is badly fermented by GM and some studies show that part of its sulfate is dissimilated to H2S, which could affect colonic mitochondrial function. Accordingly, these results support the use of laminaran, alginate and agaro-oligosaccharides as prebiotics while more studies are necessary regarding that of fucoidan, carrageenan and ulvan. However, the realization of clinical trials is necessary to confirm such prebiotic properties in humans.

13.
Nutrients ; 12(5)2020 May 19.
Article in English | MEDLINE | ID: mdl-32438689

ABSTRACT

The gut microbiota is emerging as a promising target for the management or prevention of inflammatory and metabolic disorders in humans. Many of the current research efforts are focused on the identification of specific microbial signatures, more particularly for those associated with obesity, type 2 diabetes, and cardiovascular diseases. Some studies have described that the gut microbiota of obese animals and humans exhibits a higher Firmicutes/Bacteroidetes ratio compared with normal-weight individuals, proposing this ratio as an eventual biomarker. Accordingly, the Firmicutes/Bacteroidetes ratio is frequently cited in the scientific literature as a hallmark of obesity. The aim of the present review was to discuss the validity of this potential marker, based on the great amount of contradictory results reported in the literature. Such discrepancies might be explained by the existence of interpretative bias generated by methodological differences in sample processing and DNA sequence analysis, or by the generally poor characterization of the recruited subjects and, more particularly, the lack of consideration of lifestyle-associated factors known to affect microbiota composition and/or diversity. For these reasons, it is currently difficult to associate the Firmicutes/Bacteroidetes ratio with a determined health status and more specifically to consider it as a hallmark of obesity.


Subject(s)
Bacteroidetes/isolation & purification , Dysbiosis/diagnosis , Firmicutes/isolation & purification , Gastrointestinal Microbiome/genetics , Obesity/microbiology , Adult , Aged , Biomarkers/analysis , Colony Count, Microbial , Dysbiosis/microbiology , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sequence Analysis, DNA
14.
Front Microbiol ; 10: 1522, 2019.
Article in English | MEDLINE | ID: mdl-31333624

ABSTRACT

Although the role of adaptive immunity in fighting Pneumocystis infection is well known, the role of the innate, airway epithelium, responses remains largely unexplored. The concerted interaction of innate and adaptive responses is essential to successfully eradicate infection. Increased expression of goblet-cell-derived CLCA1 protein plus excess mucus in infant autopsy lungs and in murine models of primary Pneumocystis infection alert of innate immune system immunopathology associated to Pneumocystis infection. Nonetheless, whether blocking mucus-associated innate immune pathways decreases Pneumocystis-related immunopathology is unknown. Furthermore, current treatment of Pneumocystis pneumonia (PcP) relying on anti-Pneumocystis drugs plus steroids is not ideal because removes cellular immune responses against the fungal pathogen. In this study, we used the steroid-induced rat model of PcP to evaluate inflammation and mucus progression, and tested the effect of niflumic acid (NFA), a fenamate-type drug with potent CLCA1 blocker activity, in decreasing Pneumocystis-associated immunopathology. In this model, animals acquire Pneumocystis spontaneously and pneumonia develops owing to the steroids-induced immunodeficiency. Steroids led to decreased animal weight evidencing severe immunosuppression and to significant Pneumocystis-associated pulmonary edema as evidenced by wet-to-dry lung ratios that doubled those of uninfected animals. Inflammatory cuffing infiltrates were noticed first around lung blood vessels followed by bronchi, and both increased progressively. Similarly, airway epithelial and lumen mucus progressively increased. This occurred in parallel to increasing levels of MUC5AC and mCLCA3, the murine homolog of hCLCA1. Administration of NFA caused a significant decrease in total mucus, MUC5AC and mCLCA3 and also, in Pneumocystis-associated inflammation. Most relevant, NFA treatment improved survival at 8 weeks of steroids. Results suggest an important role of innate immune responses in immunopathology of steroid-induced PcP. They warrant evaluation of CLCA1 blockers as adjunctive therapy in this condition and describe a simple model to evaluate therapeutic interventions for steroid resistant mucus, a common condition in patients with chronic lung disease like asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis.

15.
Med Mycol ; 57(4): 457-467, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30169683

ABSTRACT

Candida albicans is commensal yeast that colonizes skin and mucosa; however, it can become an opportunist pathogen by changing from blastoconidia (commensal form) into hypha (pathogenic form). Each form activates a different cytokines response in epithelial cells. Little is known about the commensal role of C. albicans in the innate immunity. This work studied whether stimulation with C. albicans blastoconidia induces protection in keratinocytes and/or in a reconstituted human epithelium (RHE) infected with C. albicans. For this, inactivated C. albicans blastoconidia was used to stimulate keratinocytes and RHE prior to infection with C. albicans. Blastoconidia induced different cytokine expression profiles; in the case of RHE it decreased interleukin (IL)-1ß and IL-10 and increased IL-8, tumor necrosis factor α (TNF-α), and interferon γ (IFN-γ). A significant increase in the expression of human ß-defensins (HBD) 2 and HBD3 was observed in blastoconidia stimulated keratinocytes and RHE, associated with impaired growth and viability of C. albicans. Additionally, blastoconidia stimulation decreased the expression of virulence factors in C. albicans that are associated with filamentation (EFG1, CPH1 and NRG1), adhesion (ALS5), and invasion (SAP2). Blastoconidia stimulated RHE was significantly less damaged by C. albicans invasion. These results show that the commensal form of C. albicans would exert a protective effect against self-infection.


Subject(s)
Candida albicans/immunology , Epithelium/immunology , Immunity, Innate , Keratinocytes/immunology , Spores, Fungal/immunology , Cells, Cultured , Cytokines/biosynthesis , Defensins/biosynthesis , Humans , Organ Culture Techniques
16.
Mycoses ; 62(3): 247-251, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30561858

ABSTRACT

OBJECTIVES: We investigated the colonisation by Candida spp in patients using orthodontic fixed appliances by characterising the isolated Candida strains and by evaluating the host oral mucosa response through the measure of human ß-defensins 3 (HBD-3) expression and Interleukin-1ß/IL-10. METHODS: Ninety patients were enrolled after signing an informed consent. Prevalence, susceptibility to fluconazole, genotyping and oral fungal burden of Candida sp. isolated were determined. Host responses were evaluated by measuring HBD-3 expression as well as IL-1ß and IL-10 in saliva. RESULTS: The colonisation rate reached 6.7% (6/90), and 5 patients were colonised with C. albicans strains and one with one with C. tropicalis. The fluconazole MIC90/susceptibility of C. albicans strains ranged 1/0.25-1 µg/mL. However, isolated strains did not present different genotype (SAB>0.9), C. albicans colonisation seems to be influenced by the duration of treatment and by level expression of HBD3 that were higher in colonised patients (not statistically different). A negative correlation between the fungal burden and IL-1ß levels was found in colonised patients but not for IL-10. CONCLUSIONS: Our study revealed that patients with orthodontic fixed appliances were mainly colonised by C. albicans, which was related to a decrease in HBD-3 expression and IL-1ß levels.


Subject(s)
Candida/isolation & purification , Carrier State/epidemiology , Immunologic Factors/analysis , Mouth Mucosa/immunology , Mycoses/epidemiology , Orthodontic Appliances, Fixed/adverse effects , Saliva/microbiology , Adolescent , Adult , Candida/classification , Candida/drug effects , Candida/immunology , Candida albicans , Carrier State/microbiology , Colony Count, Microbial , Female , Genotype , Humans , Interleukin-10/analysis , Interleukin-1beta/analysis , Male , Microbial Sensitivity Tests , Mycoses/microbiology , Prevalence , Young Adult , beta-Defensins/analysis
17.
Front Microbiol ; 9: 1032, 2018.
Article in English | MEDLINE | ID: mdl-29896165

ABSTRACT

In this study we evaluated if zebrafish larvae can be colonized by human gut microorganisms. We tested two strategies: (1) through transplantation of a human fecal microbiota and (2) by successively transplanting aerotolerant anaerobic microorganisms, similar to the colonization in the human intestine during early life. We used conventionally raised zebrafish larvae harboring their own aerobic microbiota to improve the colonization of anaerobic microorganisms. The results showed with the fecal transplant, that some members of the human gut microbiota were transferred to larvae. Bacillus, Roseburia, Prevotella, Oscillospira, one unclassified genus of the family Ruminococcaceae and Enterobacteriaceae were detected in 3 days post fertilization (dpf) larvae; however only Bacillus persisted to 7 dpf. Successive inoculation of Lactobacillus, Bifidobacterium and Clostridioides did not improve their colonization, compared to individual inoculation of each bacterial species. Interestingly, the sporulating bacteria Bacillus clausii and Clostridioides difficile were the most persistent microorganisms. Their endospores persisted at least 5 days after inoculating 3 dpf larvae. However, when 5 dpf larvae were inoculated, the proportion of vegetative cells in larvae increased, revealing proliferation of the inoculated bacteria and better colonization of the host. In conclusion, these results suggest that it is feasible to colonize zebrafish larvae with some human bacteria, such as C. difficile and Bacillus and open an interesting area to study interactions between these microorganisms and the host.

18.
Rev. Hosp. Clin. Univ. Chile ; 29(2): 136-143, 2018.
Article in Spanish | LILACS | ID: biblio-986675

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is currently considered in Chile and worldwide, as the main cause of cirrhosis and liver transplantation. It is therefore one of the main public health objectives for reducing its prevalence. In last years, it was suggested that the intestinal microbiota (IM) might contribute to the pathophysiology of NAFLD, as well as in the progression toward nonalcoholic steatohepatitis (NASH) and cirrhosis. It is known that changes in the composition of IM are associated with alterations in intestinal permeability and the production of inflammatory metabolites. These alterations are part of the pathophysiological mechanisms leading to the development of NASH. However studies on MI in patients with NAFLD and NASH in Chile are scarce. Through a research grant, recently awarded at the Hospital Clínico Universidad de Chile, we aim to confirm and characterize the intestinal dysbiosis associated with NAFLD in Chilean patients and to establish the relationship between the changes in microbial composition with the progression of liver damage. The description of these alterations represents an opportunity to explore new therapeutic approaches for future interventions. In effect, through the restoration of an intestinal microbial environment towards homeostasis in these patients, we expect to reverse or improve the progression of damage provoked by this disease. (AU)


Subject(s)
Dysbiosis/physiopathology , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/pathology
19.
Front Pediatr ; 5: 192, 2017.
Article in English | MEDLINE | ID: mdl-28929093

ABSTRACT

The current recommendation of the World Health Organization (WHO) regarding cesarean section (C-section) is that this clinical practice should be carried out only under specific conditions, when the health or life of the mother/newborn dyad is threatened, and that its use should not exceed 10-15% of the total deliveries. However, over the last few decades, the frequency of C-section delivery in medium- and high-income countries has rapidly increased worldwide. This review describes the evolution of this procedure in Latin American countries, showing that today more than half of newborns in the region are delivered by C-section. Given that C-section delivery is more expensive than vaginal delivery, its use has increased more rapidly in the private than the public sector; nevertheless, the prevalence of C-section deliveries in the public sector is higher than the WHO's recommendations and continues to increase, representing a growing challenge for Latin America. Although the medium- and long-term consequences of C-section delivery, as opposed to vaginal delivery, on the infant health are unclear, epidemiological studies suggest that it is associated with higher risk of developing asthma, food allergy, type 1 diabetes, and obesity during infancy. These findings are important, as the incidence of these diseases in the Latin American pediatric population is also increasing, particularly obesity. Although the link between these diseases and delivery mode remains controversial, recent studies indicate that the establishment of the gut microbiota is delayed in infants born by C-section during the postnatal period, i.e., during a critical developmental window for the maturation of the newborn's immune system. This delay may favor the subsequent development of inflammatory and metabolic disorders during infancy. Accordingly, from a public health perspective, it is important to slow down and eventually reverse the pattern of increased C-section use in the affected populations.

20.
Front Microbiol ; 8: 1221, 2017.
Article in English | MEDLINE | ID: mdl-28713349

ABSTRACT

The gut microbiota is currently recognized as an important factor regulating the homeostasis of the gastrointestinal tract and influencing the energetic metabolism of the host as well as its immune and central nervous systems. Determining the gut microbiota composition of healthy subjects is therefore necessary to establish a baseline allowing the detection of microbiota alterations in pathologic conditions. Accordingly, the aim of this study was to characterize the gut microbiota of healthy Chilean subjects using 16S rRNA gene sequencing. Fecal samples were collected from 41 young, asymptomatic, normal weight volunteers (age: 25 ± 4 years; ♀:48.8%; BMI: 22.5 ± 1.6 kg/m2) with low levels of plasma (IL6 and hsCRP) and colonic (fecal calprotectin) inflammatory markers. The V3-V4 region of the 16S rRNA gene of bacterial DNA was amplified and sequenced using MiSeq Illumina system. 109,180 ± 13,148 sequences/sample were obtained, with an α-diversity of 3.86 ± 0.37. The dominant phyla were Firmicutes (43.6 ± 9.2%) and Bacteroidetes (41.6 ± 13.1%), followed by Verrucomicrobia (8.5 ± 10.4%), Proteobacteria (2.8 ± 4.8%), Actinobacteria (1.8 ± 3.9%) and Euryarchaeota (1.4 ± 2.7%). The core microbiota representing the genera present in all the subjects included Bacteroides, Prevotella, Parabacteroides (phylum Bacteroidetes), Phascolarctobacterium, Faecalibacterium, Ruminococcus, Lachnospira, Oscillospira, Blautia, Dorea, Roseburia, Coprococcus, Clostridium, Streptococcus (phylum Firmicutes), Akkermansia (phylum Verrucomicrobia), and Collinsella (phylum Actinobacteria). Butyrate-producing genera including Faecalibacterium, Roseburia, Coprococcus, and Oscillospira were detected. The family Methanobacteriaceae was reported in 83% of the subjects and Desulfovibrio, the most representative sulfate-reducing genus, in 76%. The microbiota of the Chilean individuals significantly differed from those of Papua New Guinea and the Matses ethnic group and was closer to that of the Argentinians and sub-populations from the United States. Interestingly, the microbiota of the Chilean subjects stands out for its richness in Verrucomicrobia; the mucus-degrading bacterium Akkermansia muciniphila is the only identified member of this phylum. This is an important finding considering that this microorganism has been recently proposed as a hallmark of healthy gut due to its anti-inflammatory and immunostimulant properties and its ability to improve gut barrier function, insulin sensitivity and endotoxinemia. These results constitute an important baseline that will facilitate the characterization of dysbiosis in the main diseases affecting the Chilean population.

SELECTION OF CITATIONS
SEARCH DETAIL
...