Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nano Lett ; 10(7): 2323-9, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20503995

ABSTRACT

The past decade has seen the explosion of experimental results on nanowires grown by catalyzed mechanisms. However, few are known on their electronic properties especially the influence of surfaces and catalysts. We demonstrate by an optical method how a curious electron-hole thermodynamic phase can help to characterize volume and surface recombination rates of silicon nanowires (SiNWs). By studying the electron-hole liquid dynamics as a function of the spatial confinement, we directly measured these two key parameters. We measured a surface recombination velocity of passivated SiNWs of 20 cm s(-1), 100 times lower than previous values reported. Furthermore, the volume recombination rate of gold-catalyzed SiNWs is found to be similar to that of a high-quality three-dimensional silicon crystal; the influence of the catalyst is negligible. These results advance the knowledge of SiNW surface passivation and provide essential guidance to the development of efficient nanowire-based devices.

2.
Nano Lett ; 9(7): 2575-8, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19583280

ABSTRACT

We study by time-resolved low temperature photoluminescence (PL) experiments of the electronic states of silicon nanowires (SiNWs) grown by gold catalyzed chemical vapor deposition and passivated by thermal SiO(2). The typical recombination line of free carriers in gold-catalyzed SiNWs (Au-SiNWs) is identified and studied by time-resolved experiments. We demonstrate that intrinsic Auger recombination governs the recombination dynamic of the dense e-h plasma generated inside the NW. In a few tens of nanoseconds after the pulsed excitation, the density of the initial electronic system rapidly decreases down to reach that of a stable electron-hole liquid phase. The comparison of the PL intensity decay time of Au-SiNWs with high crystalline quality and purity silicon layer allows us to conclude that the Au-SiNW electronic properties are highly comparable to those of bulk silicon crystal.


Subject(s)
Electrons , Gold/chemistry , Luminescent Measurements , Nanowires/chemistry , Silicon/chemistry , Catalysis
3.
Phys Rev Lett ; 92(23): 236802, 2004 Jun 11.
Article in English | MEDLINE | ID: mdl-15245183

ABSTRACT

We report a luminescence study of the electronic properties of the 2D electron-hole liquid in crystalline Si quantum wells with SiO2 dielectric barriers. The Fermi-Dirac condensation of e-h pairs into a metallic liquid is strongly enhanced by spatial localization. We present experimental evidence for the formation of liquid nanodroplets, with size increasing with e-h pair density. The quantum confined regime is observed for well width below 15 nm. The data are analyzed in a confinement model that takes account of the band-gap renormalization by 2D many-body effects and the increase of the Coulomb interactions due to the dielectric mismatch between the Si well and the SiO2 barriers.

SELECTION OF CITATIONS
SEARCH DETAIL
...