Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37959602

ABSTRACT

The industrial sintering process used to produce metallic matrix pads has been altered to diminish the amount of copper used. Unfortunately, replacing a large part of the copper with iron seems to have reached a limit. In the high-energy, emergency-type rail braking used in this study, the materials are put to the very limit of their usage capacity, allowing us to observe the evolution of the microstructure and mechanical properties of sintered, metallic matrix pads. After the braking test, their compressive behaviour was assessed using digital image correlation (DIC), and their microstructure with scanning electron microscopy (SEM). The worn material has three flat layers with different microstructures and compressive behaviours. The bottom layer seems unmodified. Macroscopic and microscopic cracks run through the intermediate layer (2-15 mm depth). The top layer has stiffened thanks to resolidification of copper. The temperature reaches 1000 °C during the braking test, which also explains the carbon diffusion into iron that result in the weakening of iron -graphite interfaces in the pad. Finally, submicronic particles are detected at many open interfaces of the worn and compressed pad. Associated with the predominant role of graphite particles, this explains the weak compressive behaviour of the pads.

2.
Materials (Basel) ; 15(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36431396

ABSTRACT

The contact interface between the rotation and static part of a friction brake is central to the optimal functioning of the brake system due to the occurrence of heat dissipation, mechanical interaction and thermal exchanges. Generally, braking performances are evaluated by the energetic efficiency and wear rates of the contact surface. However, the compressive behaviour of the contact materials has also a significant contribution to the overall performances. In this work, the meso- and microscopic compressive behaviour of a sintered semi-metallic brake-pad material is investigated mainly via compression testing coupled with Digital Image Correlation (DIC) technique, as well as optical and scanning electron microscopy (SEM) analysis. The composition of a reference material (RM) is simplified to a selection of nine components, as opposed to up to thirty components typically used in commercial brake-pad materials. The retained components are considered as the most crucial for safe-operating performances. At the studied stress levels, the RM material is flexible (E = 5330 MPa), deformable (Ezz-plastic = -0.21%), and exhibits hysteresis loops. Subsequently, the contribution to the mechanical response of each individual component is investigated by producing the so-called dissociated materials, where the number of components is, at a time, further reduced. It is observed that the macroscopic behaviour is mainly controlled by the content (i.e., size distribution, shape and nature) of graphite particles, and that the hysteresis is only related to one of the two types of graphite used (G2 particles). Moreover, RM containing 13 wt% of G2 particles embedded in a relatively soft matrix (10.86 GPa) is able to increase the hysteresis (by 35%) when compared to the dissociated material containing 20 wt% of G2 particles which is embedded in a stiffer matrix (E = 106 GPa).

SELECTION OF CITATIONS
SEARCH DETAIL
...