Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Res ; 41(8): 1717-1728, 2023 08.
Article in English | MEDLINE | ID: mdl-36582023

ABSTRACT

Fracture burden has created a need to better understand bone repair processes under different pathophysiological states. Evaluation of structural and material properties of the mineralized callus, which is integral to restoring biomechanical stability is, therefore, vital. Microcomputed tomography (micro-CT) can facilitate noninvasive imaging of fracture repair, however, current methods for callus segmentation are only semiautomated, restricted to defined regions, time/labor intensive, and prone to user variation. Herein, we share a new automatic method for segmenting callus in micro-CT tomograms that will allow for objective, quantitative analysis of the bone fracture microarchitecture. Fractured and nonfractured mouse femurs were scanned and processed by both manual and automated segmentation of fracture callus from cortical bone after which microarchitectural parameters were analyzed. All segmentation and analysis steps were performed using CTAn (Bruker) with automatic segmentation performed using the software's image-processing plugins. Results showed automatic segmentation reliably and consistently segmented callus from cortical bone, demonstrating good agreement with manual methods with low bias: tissue volume (TV): -0.320 mm3 , bone volume (BV): 0.0358 mm3 , and bone volume/tissue volume (BV/TV): -3.52%, and was faster and eliminated user-bias and variation. Method scalability and translatability across rodent models were verified in scans of fractured rat femora showing good agreement with manual methods with low bias: TV: -3.654 mm3 , BV: 0.830 mm3 , and BV/TV: 7.81%. Together, these data validate a new automated method for segmentation of callus and cortical bone in micro-CT tomograms that we share as a fast, reliable, and less user-dependent tool for application to study bone callus in fracture, and potentially elsewhere.


Subject(s)
Femoral Fractures , Rodentia , Rats , Mice , Animals , X-Ray Microtomography/methods , Bony Callus/diagnostic imaging , Femur/diagnostic imaging , Femoral Fractures/diagnostic imaging
2.
Sci Adv ; 2(11): e1600990, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27847865

ABSTRACT

Mechanistic insights into pain pathways are essential for a rational approach to treating this vast and increasing clinical problem. Sensory neurons that respond to tissue damage (nociceptors) may evoke pain sensations and are typically classified on the basis of action potential velocity. Electrophysiological studies have suggested that most of the C-fiber nociceptors are polymodal, responding to a variety of insults. In contrast, gene deletion studies in the sensory neurons of transgenic mice have frequently resulted in modality-specific deficits. We have used an in vivo imaging approach using the genetically encoded fluorescent calcium indicator GCaMP to study the activity of dorsal root ganglion sensory neurons in live animals challenged with painful stimuli. Using this approach, we can visualize spatially distinct neuronal responses and find that >85% of responsive dorsal root ganglion neurons are modality-specific, responding to either noxious mechanical, cold, or heat stimuli. These observations are mirrored in behavioral studies of transgenic mice. For example, deleting sodium channel Nav1.8 silences mechanical- but not heat-sensing sensory neurons, consistent with behavioral deficits. In contrast, primary cultures of axotomized sensory neurons show high levels of polymodality. After intraplantar treatment with prostaglandin E2, neurons in vivo respond more intensely to noxious thermal and mechanical stimuli, and additional neurons (silent nociceptors) are unmasked. Together, these studies define polymodality as an infrequent feature of nociceptive neurons in normal animals.


Subject(s)
Cell Tracking/methods , Ganglia, Spinal , Luminescent Proteins , Nociceptors , Optical Imaging/methods , Animals , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Transgenic , Nociceptors/cytology , Nociceptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...