Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 12 02.
Article in English | MEDLINE | ID: mdl-34854375

ABSTRACT

Long ascending propriospinal neurons (LAPNs) are a subpopulation of spinal cord interneurons that directly connect the lumbar and cervical enlargements. Previously we showed, in uninjured animals, that conditionally silencing LAPNs disrupted left-right coordination of the hindlimbs and forelimbs in a context-dependent manner, demonstrating that LAPNs secure alternation of the fore- and hindlimb pairs during overground stepping. Given the ventrolateral location of LAPN axons in the spinal cord white matter, many likely remain intact following incomplete, contusive, thoracic spinal cord injury (SCI), suggesting a potential role in the recovery of stepping. Thus, we hypothesized that silencing LAPNs after SCI would disrupt recovered locomotion. Instead, we found that silencing spared LAPNs post-SCI improved locomotor function, including paw placement order and timing, and a decrease in the number of dorsal steps. Silencing also restored left-right hindlimb coordination and normalized spatiotemporal features of gait such as stance and swing time. However, hindlimb-forelimb coordination was not restored. These data indicate that the temporal information carried between the spinal enlargements by the spared LAPNs post-SCI is detrimental to recovered hindlimb locomotor function. These findings are an illustration of a post-SCI neuroanatomical-functional paradox and have implications for the development of neuronal- and axonal-protective therapeutic strategies and the clinical study/implementation of neuromodulation strategies.


Subject(s)
Extremities/physiopathology , Interneurons/physiology , Recovery of Function , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/rehabilitation , Animals , Disease Models, Animal , Extremities/innervation , Female , Gait , Rats, Sprague-Dawley
2.
Elife ; 92020 09 09.
Article in English | MEDLINE | ID: mdl-32902379

ABSTRACT

Within the cervical and lumbar spinal enlargements, central pattern generator (CPG) circuitry produces the rhythmic output necessary for limb coordination during locomotion. Long propriospinal neurons that inter-connect these CPGs are thought to secure hindlimb-forelimb coordination, ensuring that diagonal limb pairs move synchronously while the ipsilateral limb pairs move out-of-phase during stepping. Here, we show that silencing long ascending propriospinal neurons (LAPNs) that inter-connect the lumbar and cervical CPGs disrupts left-right limb coupling of each limb pair in the adult rat during overground locomotion on a high-friction surface. These perturbations occurred independent of the locomotor rhythm, intralimb coordination, and speed-dependent (or any other) principal features of locomotion. Strikingly, the functional consequences of silencing LAPNs are highly context-dependent; the phenotype was not expressed during swimming, treadmill stepping, exploratory locomotion, or walking on an uncoated, slick surface. These data reveal surprising flexibility and context-dependence in the control of interlimb coordination during locomotion.


Subject(s)
Central Pattern Generators , Extremities , Interneurons , Proprioception/physiology , Animals , Central Pattern Generators/cytology , Central Pattern Generators/physiology , Commissural Interneurons/cytology , Commissural Interneurons/physiology , Extremities/innervation , Extremities/physiology , Female , Interneurons/cytology , Interneurons/physiology , Rats , Rats, Sprague-Dawley , Spinal Cord/cytology , Spinal Cord/physiology
3.
Data Brief ; 28: 105056, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32226812

ABSTRACT

Reduced muscle mass and increased fatiguability are major complications after spinal cord injury (SCI), and often hinder the rehabilitation efforts of patients. Such detriments to the musculoskeletal system, and the concomitant reduction in level of activity, contribute to secondary complications such as cardiovascular disease, diabetes, bladder dysfunction and liver damage. As a result of decreased weight-bearing capacity after SCI, muscles undergo morphological, metabolic, and contractile changes. Recent studies have shown that exercise after SCI decreases muscle wasting and reduces the burden of secondary complications. Here, we describe RNA sequencing data for detecting chronic transcriptomic changes in the rat soleus after SCI at two levels of injury severity, under conditions of restricted in-cage activity and two methods of applied exercise, swimming or shallow water walking. We demonstrate that the sequenced data are of good quality and show a high alignment rate to the Rattus norvegicus reference assembly (Rn6). The raw data, along with UCSC Genome Browser tracks created to facilitate exploration of gene expression, are available in the NCBI Gene Expression Omnibus (GEO; GSE129694).

SELECTION OF CITATIONS
SEARCH DETAIL
...